OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 31800–31808

Multi-wavelength Brillouin-Raman fiber laser utilizing enhanced nonlinear amplifying loop mirror design

G. Mamdoohi, A. R. Sarmani, M. H. Yaacob, M. Mokhtar, and M. A. Mahdi  »View Author Affiliations

Optics Express, Vol. 21, Issue 26, pp. 31800-31808 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a single-spacing, multi-wavelength Brillouin-Raman fiber laser utilizing an enhanced cavity of nonlinear amplifying loop mirror. In this structure, the optimization of multi-wavelength lasing is done with proper adjustments of coupling ratio and Brillouin pump power. When setting the Raman pump power to 300 mW, up to 28 channels with an average 17 dB optical signal-to-noise ratio are achieved. In this case, the Brillouin pump power is maintained at −2.6 dBm when the splitting ratio and Brillouin pump wavelength are fixed at 99/1 and 1555 nm, correspondingly. Our achievements present high numbers of Stokes channels with an acceptable optical signal-to-noise ratio at low pump power operation.

© 2013 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(290.5900) Scattering : Scattering, stimulated Brillouin
(290.5910) Scattering : Scattering, stimulated Raman

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 23, 2013
Revised Manuscript: November 25, 2013
Manuscript Accepted: December 4, 2013
Published: December 16, 2013

G. Mamdoohi, A. R. Sarmani, M. H. Yaacob, M. Mokhtar, and M. A. Mahdi, "Multi-wavelength Brillouin-Raman fiber laser utilizing enhanced nonlinear amplifying loop mirror design," Opt. Express 21, 31800-31808 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. P. Fok and C. Shu, “Spacing-adjustable multi-wavelength source from a stimulated Brillouin scattering assisted erbium-doped fiber laser,” Opt. Express14(7), 2618–2624 (2006). [CrossRef] [PubMed]
  2. Y.-G. Han, T. V. Tran, and S. B. Lee, “Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber,” Opt. Lett.31(6), 697–699 (2006). [CrossRef] [PubMed]
  3. X. Feng, H. Y. Tam, and P. K. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express14(18), 8205–8210 (2006). [CrossRef] [PubMed]
  4. Z. Zhang, L. Zhan, K. Xu, J. Wu, Y. Xia, and J. Lin, “Multi-wavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter,” Opt. Lett.33(4), 324–326 (2008). [CrossRef] [PubMed]
  5. Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, “Tunable multi-wavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter,” IEEE Photon. Technol. Lett.16(9), 2015–2017 (2004). [CrossRef]
  6. A. M. Ramzia Salem, M. H. Al-Mansoori, H. Hizam, S. B. Mohd Noor, M. H. Abu Bakar, and M. A. Mahdi, “Multi-wavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber,” Appl. Phys. B103(2), 363–368 (2011). [CrossRef]
  7. X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express13(1), 142–147 (2005). [CrossRef] [PubMed]
  8. J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multiwavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express19(15), 14682–14689 (2011). [CrossRef] [PubMed]
  9. B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett.13(12), 1352–1354 (2001). [CrossRef]
  10. G. Mamdoohi, A. R. Sarmani, A. F. Abas, M. H. Yaacob, M. Mokhtar, and M. A. Mahdi, “20 GHz spacing multi-wavelength generation of Brillouin-Raman fiber laser in a hybrid linear cavity,” Opt. Express21(16), 18724–18732 (2013). [CrossRef] [PubMed]
  11. A. K. Zamzuri, M. A. Mahdi, A. Ahmad, M. I. Md Ali, and M. H. Al-Mansoori, “Flat amplitude multiwavelength Brillouin-Raman comb fiber laser in Rayleigh-scattering-enhanced linear cavity,” Opt. Express15(6), 3000–3005 (2007). [CrossRef] [PubMed]
  12. K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett.27(3), 155–157 (2002). [CrossRef] [PubMed]
  13. N. A. M. Ahmad Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys.21(9), 1656–1660 (2011). [CrossRef]
  14. A. K. Zamzuri, M. I. Md Ali, A. Ahmad, R. Mohamad, and M. A. Mahdi, “Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity,” Opt. Lett.31(7), 918–920 (2006). [CrossRef] [PubMed]
  15. A. K. Zamzuri, M. A. Mahdi, M. H. Al-Mansoori, N. M. Samsuri, A. Ahmad, and M. S. Islam, “OSNR variation of multiple laser lines in Brillouin-Raman fiber laser,” Opt. Express17(19), 16904–16910 (2009). [CrossRef] [PubMed]
  16. M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol.27(22), 5038–5044 (2009). [CrossRef]
  17. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett.13(1), 56–58 (1988). [CrossRef] [PubMed]
  18. S. Boscolo, R. Bhamber, and S. K. Turitsyn, “Design of Raman-based nonlinear loop mirror for all-optical 2R regeneration of differential phase-shift-keying transmission,” IEEE J. Quantum Electron.42(7), 619–624 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited