OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 31824–31829

Tuning optical responses of metallic dipole nanoantenna using graphene

Xingang Ren, Wei E. I. Sha, and Wallace C. H. Choy  »View Author Affiliations

Optics Express, Vol. 21, Issue 26, pp. 31824-31829 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2004 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nanoantennas play a fundamental role in the nanotechnology due to their capabilities to confine and enhance the light through converting the localized fields to propagating ones, and vice versa. Here, we theoretically propose a novel nanoantenna with the metal-insulator-graphene configuration where a graphene sheet dynamically controls the characteristics of a metallic dipole antenna in terms of near-field distribution, resonance frequency, bandwidth, radiation pattern, etc. Our results show that by modifying dispersion relation of the graphene sheet attached to the insulator through tuning chemical potentials, we can achieve strong mode couplings between the graphene sheet and the metallic nanoantenna on the top of the insulator. Interestingly, the in-phase and out-of-phase couplings between metallic plasmonics and graphene plasmonics not only split the single resonance frequency of the conventional metallic dipole antenna but also modify the near-field and far-field responses of the metal-graphene nanoantenna. This work is of a great help to design high-performance electrically-tunable nanoantennas applicable both in nano-optics and nano-electronics fields.

© 2013 Optical Society of America

OCIS Codes
(230.4555) Optical devices : Coupled resonators
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: September 25, 2013
Revised Manuscript: December 3, 2013
Manuscript Accepted: December 6, 2013
Published: December 16, 2013

Xingang Ren, Wei E. I. Sha, and Wallace C. H. Choy, "Tuning optical responses of metallic dipole nanoantenna using graphene," Opt. Express 21, 31824-31829 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem.57, 303–331 (2006). [CrossRef] [PubMed]
  2. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics3, 658–661 (2009). [CrossRef]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]
  4. X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater.24, 3046–3052 (2012). [CrossRef] [PubMed]
  5. P. Mhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005). [CrossRef]
  6. X. Chen, V. Sandoghdar, and M. Agio, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field,” Opt. Express18, 10878–10887 (2010). [CrossRef] [PubMed]
  7. R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011). [CrossRef]
  8. K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012). [CrossRef] [PubMed]
  9. J. Zhu, Q. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale5, 7785–7789 (2013). [CrossRef] [PubMed]
  10. W. Lu, W. Zhu, H. Xu, Z. Ni, Z. Dong, and T. Cui, “Flexible transformation plasmonics using graphene,” Opt. Express21, 10475–10482 (2013). [CrossRef] [PubMed]
  11. A. K. Geim, “Graphene: Status and prospects,” Science324, 1530–1534 (2009). [CrossRef] [PubMed]
  12. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6, 749–758 (2012). [CrossRef]
  13. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett.13, 1257–1264 (2013). [CrossRef] [PubMed]
  14. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008). [CrossRef] [PubMed]
  15. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009). [CrossRef]
  16. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007). [CrossRef] [PubMed]
  17. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett.101, 043901 (2008). [CrossRef] [PubMed]
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  19. G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys.103, 064302 (2008). [CrossRef]
  20. A. Mock, “Padé approximant spectral fit for fdtd simulation of graphene in the near infrared,” Opt. Mater. Express2, 771–781 (2012). [CrossRef]
  21. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong lightc-matter interactions,” Nano Lett.11, 3370–3377 (2011). [CrossRef] [PubMed]
  22. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  23. X. Ren, Z. Huang, X. Wu, S. Lu, H. Wang, L. Wu, and S. Li, “High-order unified symplectic fdtd scheme for the metamaterials,” Comput. Phys. Commun.183, 1192–1200 (2012). [CrossRef]
  24. L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, 2000). [CrossRef]
  25. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron.9, 919–933 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited