OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 31830–31836

Parallel laser micromachining based on diffractive optical elements with dispersion compensated femtosecond pulses

S. Torres-Peiró, J. González-Ausejo, O. Mendoza-Yero, G. Mínguez-Vega, P. Andrés, and J. Lancis  »View Author Affiliations


Optics Express, Vol. 21, Issue 26, pp. 31830-31836 (2013)
http://dx.doi.org/10.1364/OE.21.031830


View Full Text Article

Enhanced HTML    Acrobat PDF (1648 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate multi-beam high spatial resolution laser micromachining with femtosecond pulses. The effects of chromatic aberrations as well as pulse stretching on the material processed due to diffraction were significantly mitigated by using a suited dispersion compensated module (DCM). This permits to increase the area of processing in a factor 3 in comparison with a conventional setup. Specifically, 52 blind holes have been drilled simultaneously onto a stainless steel sample with a 30 fs laser pulse in a parallel processing configuration.

© 2013 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.1960) Physical optics : Diffraction theory
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.3850) Other areas of optics : Materials processing

ToC Category:
Laser Microfabrication

History
Original Manuscript: September 27, 2013
Revised Manuscript: November 22, 2013
Manuscript Accepted: November 27, 2013
Published: December 16, 2013

Citation
S. Torres-Peiró, J. González-Ausejo, O. Mendoza-Yero, G. Mínguez-Vega, P. Andrés, and J. Lancis, "Parallel laser micromachining based on diffractive optical elements with dispersion compensated femtosecond pulses," Opt. Express 21, 31830-31836 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-26-31830


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Cheng, C.- Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol.46, 88–102 (2013). [CrossRef]
  2. R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett.88(9), 097603 (2002). [CrossRef] [PubMed]
  3. N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion,” Appl. Phys., A Mater. Sci. Process.81(2), 345–356 (2005). [CrossRef]
  4. J. Kato, N. Takeyasu, Y. Adachi, H. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett.86(4), 044102 (2005). [CrossRef]
  5. S. Matsuo, S. Juodkazis, and H. Misawa, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys., A.80, 683–685 (2004). [CrossRef]
  6. P. S. Salter and M. J. Booth, “Addressable microlens array for parallel laser microfabrication,” Opt. Lett.36(12), 2302–2304 (2011). [CrossRef] [PubMed]
  7. D. Kim and P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett.35(10), 1602–1604 (2010). [CrossRef] [PubMed]
  8. D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express18(17), 18086–18094 (2010). [CrossRef] [PubMed]
  9. S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett.76(19), 2668–2670 (2000). [CrossRef]
  10. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett.79(6), 725–727 (2001). [CrossRef]
  11. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett.82(17), 2758–2760 (2003). [CrossRef]
  12. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express12(9), 1908–1915 (2004). [CrossRef] [PubMed]
  13. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005). [CrossRef]
  14. S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett.34(1), 22–24 (2009). [CrossRef] [PubMed]
  15. Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci.255(5), 2284–2289 (2008). [CrossRef]
  16. Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci.255(13-14), 6582–6588 (2009). [CrossRef]
  17. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express18(20), 21090–21099 (2010). [CrossRef] [PubMed]
  18. J. Cugat, A. Ruiz de la Cruz, R. Solé, A. Ferrer, J. J. Carvajal, X. Mateos, J. Massons, J. Solís, G. Lifante, F. Díaz, and M. Aguilgó, “Femtosecond-Laser Microstructuring of Ribs on Active (Yb,Nb): RTP/RTP Planar Waveguides,” J. Lightwave Technol.31(3), 385–390 (2013). [CrossRef]
  19. J. Amako, K. Nagasaka, and N. Kazuhiro, “Chromatic-distortion compensation in splitting and focusing of femtosecond pulses by use of a pair of diffractive optical elements,” Opt. Lett.27(11), 969–971 (2002). [CrossRef] [PubMed]
  20. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996). [CrossRef] [PubMed]
  21. L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys., A Mater. Sci. Process.92(4), 749–753 (2008). [CrossRef]
  22. E. L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, and P. A. Loukakos, “Laser induced forward transfer of metal oxides using femtosecond double pulses,” Appl. Surf. Sci.257(2), 508–511 (2010). [CrossRef]
  23. J. R. Vázquez de Aldana, C. Méndez, and L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express14(3), 1329–1338 (2006). [CrossRef] [PubMed]
  24. J. Lancis, G. Mínguez-Vega, E. Tajahuerce, V. Climent, P. Andrés, and J. Caraquitena, “Chromatic compensation of broadband light diffraction: ABCD-matrix approach,” J. Opt. Soc. Am. A21(10), 1875–1885 (2004). [CrossRef] [PubMed]
  25. G. Mínguez-Vega, J. Lancis, J. Caraquitena, V. Torres-Company, and P. Andrés, “High spatiotemporal resolution in multifocal processing with femtosecond laser pulses,” Opt. Lett.31(17), 2631–2633 (2006). [CrossRef] [PubMed]
  26. G. Mínguez-Vega, E. Tajahuerce, M. Fernández-Alonso, V. Climent, J. Lancis, J. Caraquitena, and P. Andrés, “Dispersion-compensated beam-splitting of femtosecond light pulses: Wave optics analysis,” Opt. Express15(2), 278–288 (2007). [CrossRef] [PubMed]
  27. R. Martínez-Cuenca, O. Mendoza-Yero, B. Alonso, Í. J. Sola, G. Mínguez-Vega, and J. Lancis, “Multibeam second-harmonic generation by spatiotemporal shaping of femtosecond pulses,” Opt. Lett.37(5), 957–959 (2012). [CrossRef] [PubMed]
  28. B. Alonso, I. J. Sola, O. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotemporal amplitude and phase reconstruction by Fourier-transform of interference spectra of high-complex-beams,” J. Opt. Soc. Am. B27(5), 933–940 (2010). [CrossRef]
  29. Ll. Martínez-León, P. Clemente, E. Tajahuerce, G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, J. Lancis, V. Climent, and P. Andrés, “Spatial-chirp compensation in dynamical holograms reconstructed with ultrafast lasers,” Appl. Phys. Lett.94(1), 011104 (2009). [CrossRef]
  30. J. Lancis, E. Tajahuerce, P. Andrés, V. Climent, and E. Tepichín, “Single-zone-plate achromatic fresnel-transform setup: Pattern tunability,” Opt. Commun.136(3-4), 297–305 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited