OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 31925–31939

Control of ultra-intense single attosecond pulse generation in laser-driven overdense plasmas

Qingcao Liu, Yanxia Xu, Xin Qi, Xiaoying Zhao, Liangliang Ji, Tongpu Yu, Luo Wei, Lei Yang, and Bitao Hu  »View Author Affiliations


Optics Express, Vol. 21, Issue 26, pp. 31925-31939 (2013)
http://dx.doi.org/10.1364/OE.21.031925


View Full Text Article

Acrobat PDF (6490 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultra-intense single attosecond pulse (AP) can be obtained from circularly polarized (CP) laser interacting with overdense plasma. High harmonics are naturally generated in the reflected laser pulses due to the laser-induced one-time drastic oscillation of the plasma boundary. Using two-dimensional (2D) planar particle-in-cell (PIC) simulations and analytical model, we show that multi-dimensional effects have great influence on the generation of AP. Self-focusing and defocusing phenomena occur in front of the compressed plasma boundary, which lead to the dispersion of the generated AP in the far field. We propose to control the reflected high harmonics by employing a density-modulated foil target (DMFT). When the target density distribution fits the laser intensity profile, the intensity of the attosecond pulse generated from the center part of the plasma has a flatten profile within the center range in the transverse direction. It is shown that a single 300 attosecond (1 as = 10−18 s) pulse with the intensity of 1.4 × 1021 W cm−2 can be naturally generated. Further simulations reveal that the reflected high harmonics properties are highly related to the modulated density distribution and the phase offset between laser field and the carrier envelope. The emission direction of the AP generated from the plasma boundary can be controlled in a very wide range in front of the plasma surface by combining the DMFT and a suitable driving laser.

© 2013 Optical Society of America

OCIS Codes
(190.4160) Nonlinear optics : Multiharmonic generation
(300.6560) Spectroscopy : Spectroscopy, x-ray
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(350.5400) Other areas of optics : Plasmas

ToC Category:
Ultrafast Optics

History
Original Manuscript: October 8, 2013
Revised Manuscript: December 6, 2013
Manuscript Accepted: December 8, 2013
Published: December 16, 2013

Citation
Qingcao Liu, Yanxia Xu, Xin Qi, Xiaoying Zhao, Liangliang Ji, Tongpu Yu, Luo Wei, Lei Yang, and Bitao Hu, "Control of ultra-intense single attosecond pulse generation in laser-driven overdense plasmas," Opt. Express 21, 31925-31939 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-26-31925


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. F. Kling and M. J. J. Vrakking, “Attosecond electron dynamics,” Annu. Rev. Phys. Chem.59, 463–492 (2008). [CrossRef]
  2. F. Remacle and R. D. Levine, “An electronic time scale in chemistry,” Proc. Natl. Acad. Sci. U.S.A.103, 6793–6798 (2006). [CrossRef] [PubMed]
  3. T.-P. Yu, A. Pukhov, Z.-M. Sheng, F. Liu, and G. Shvets, “Bright betatronlike x rays from radiation pressure acceleration of a mass-limited foil target,” Phys. Rev. Lett.110, 045001 (2013). [CrossRef]
  4. A. L’Huillier and P. Balcou, “High-order harmonic generation in rare gases with a 1-ps 1053-nm laser,” Phys. Rev. Lett.70, 774–777 (1993). [CrossRef]
  5. U. Teubner and P. Gibbon, “High-order harmonics from laser-irradiated plasma surfaces,” Rev. Mod. Phys.81, 445–479 (2009). [CrossRef]
  6. C. Thaury and F. Quéré, “High-order harmonic and attosecond pulse generation on plasma mirrors: basic mechanisms,” J. Phys. B: At. Mol. Opt. Phys.43, 213001 (2010). [CrossRef]
  7. J. L. Krause, K. J. Schafer, and K. C. Kulander, “High-order harmonic generation from atoms and ions in the high intensity regime,” Phys. Rev. Lett.68, 3535–3538 (1992). [CrossRef] [PubMed]
  8. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science314, 443–446 (2006). [CrossRef] [PubMed]
  9. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science320, 1614–1617 (2008). [CrossRef] [PubMed]
  10. G. D. Tsakiris, K. Eidmann, J. Meyer-ter Vehn, and F. Krausz, “Route to intense single attosecond pulses,” New J. Phys.8, 19 (2006). [CrossRef]
  11. S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Relativistic doppler effect: Universal spectra and zeptosecond pulses,” Phys. Rev. Lett.93, 115002 (2004). [CrossRef] [PubMed]
  12. B. Dromey, M. Zepf, a. Gopal, K. Lancaster, M. S. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nature Phys.2, 456–459 (2006). [CrossRef]
  13. H.-C. Wu and J. Meyer-ter Vehn, “Giant half-cycle attosecond pulses,” Nature Photon.6, 304–307 (2012). [CrossRef]
  14. F. Quéré, C. Thaury, P. Monot, S. Dobosz, P. Martin, J.-P. Geindre, and P. Audebert, “Coherent wake emission of high-order harmonics from overdense plasmas,” Phys. Rev. Lett.96, 125004 (2006). [CrossRef] [PubMed]
  15. S. V. Bulanov, N. M. Naumova, and F. Pegoraro, “Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma,” Phys. Plasmas1, 745–757 (1994). [CrossRef]
  16. R. Lichters, J. M. ter Vehn, and A. Pukhov, “Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity,” Phys. Plasmas3, 3425–3437 (1996). [CrossRef]
  17. T. Baeva, S. Gordienko, and A. Pukhov, “Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma,” Phys. Rev. E74, 046404 (2006). [CrossRef]
  18. T. J. M. Boyd and R. Ondarza-Rovira, “Anomalies in universal intensity scaling in ultrarelativistic laser-plasma interactions,” Phys. Rev. Lett.101, 125004 (2008). [CrossRef] [PubMed]
  19. N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou, “Relativistic generation of isolated attosecond pulses in a λ3 focal volume,” Phys. Rev. Lett.92, 063902 (2004). [CrossRef]
  20. N. M. Naumova, J. A. Nees, B. Hou, G. A. Mourou, and I. V. Sokolov, “Isolated attosecond pulses generated by relativistic effects in a wavelength-cubedfocal volume,” Opt. Lett.29, 778–780 (2004). [CrossRef] [PubMed]
  21. T. Baeva, S. Gordienko, and A. Pukhov, “Relativistic plasma control for single attosecond x-ray burst generation,” Phys. Rev. E74, 065401 (2006). [CrossRef]
  22. L. Ji, B. Shen, X. Zhang, M. Wen, C. Xia, W. Wang, J. Xu, Y. Yu, M. Yu, and Z. Xu, “Ultra-intense single attosecond pulse generated from circularly polarized laser interacting with overdense plasma,” Phys. Plasmas18, 083104 (2011). [CrossRef]
  23. J. Liangliang, S. Baifei, Z. Xiaomei, W. Wenpeng, Y. Yahong, W. Xiaofeng, Y. Longqing, and S. Yin, “Plasma approach for generating ultra-intense single attosecond pulse,” Plasma Sci. Technol.14, 859–863 (2012). [CrossRef]
  24. T. Yu, M. Chen, and A. Pukhov, “High quality gev proton beams from a density-modulated foil target,” Laser Part. Beams27, 611–617 (2009). [CrossRef]
  25. M. Chen, A. Pukhov, T. P. Yu, and Z. M. Sheng, “Enhanced collimated gev monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse,” Phys. Rev. Lett.103, 024801 (2009). [CrossRef] [PubMed]
  26. A. Macchi, F. Cattani, T. V. Liseykina, and F. Cornolti, “Laser acceleration of ion bunches at the front surface of overdense plasmas,” Phys. Rev. Lett.94, 165003 (2005). [CrossRef] [PubMed]
  27. S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Coherent focusing of high harmonics: A new way towards the extreme intensities,” Phys. Rev. Lett.94, 103903 (2005). [CrossRef] [PubMed]
  28. C. Nieter and J. R. Cary, “Vorpal: a versatile plasma simulation code,” J. Comput. Phys.196, 448–473 (2004). [CrossRef]
  29. S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, “Absorption of ultra-intense laser pulses,” Phys. Rev. Lett.69, 1383–1386 (1992). [CrossRef] [PubMed]
  30. M. Chen, A. Pukhov, Z. M. Sheng, and X. Q. Yan, “Laser mode effects on the ion acceleration during circularly polarized laser pulse interaction with foil targets,” Phys. Plasmas15, 113103 (2008). [CrossRef]
  31. X. Q. Yan, H. C. Wu, Z. M. Sheng, J. E. Chen, and J. Meyer-ter Vehn, “Self-organizing gev, nanocoulomb, collimated proton beam from laser foil interaction at 7 × 1021W/cm2,” Phys. Rev. Lett.103, 135001 (2009). [CrossRef]
  32. D. an der Brügge and A. Pukhov, “Propagation of relativistic surface harmonics radiation in free space,” Phys. Plasmas14, 093104 (2007). [CrossRef]
  33. A. Pukhov, T. Baeva, and D. an der Brgge, “Relativistic laser plasmas for novel radiation sources,” Eur. Phys. J. Spec. Top.175, 25–33 (2009). [CrossRef]
  34. S. Gordienko and A. Pukhov, “Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons,” Phys. Plasmas12, 043109 (2005). [CrossRef]
  35. X. Lavocat-Dubuis, F. Vidal, J.-P. Matte, J.-C. Kieffer, and T. Ozaki, “Multiple attosecond pulse generation in relativistically laser-driven overdense plasmas,” New J. Phys.13, 023039 (2011). [CrossRef]
  36. L. L. Ji, B. F. Shen, D. X. Li, D. Wang, Y. X. Leng, X. M. Zhang, M. Wen, W. P. Wang, J. C. Xu, and Y. H. Yu., “Relativistic single-cycled short-wavelength laser pulse compressed from a chirped pulse induced by laser-foil interaction,” Phys. Rev. Lett.105, 025001 (2010). [CrossRef] [PubMed]
  37. M. Geissler, S. Rykovanov, J. Schreiber, J. M. ter Vehn, and G. D. Tsakiris, “3d simulations of surface harmonic generation with few-cycle laser pulses,” New J. Phys.9, 218 (2007). [CrossRef]
  38. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007). [CrossRef]
  39. D. an der Brügge, N. Kumar, A. Pukhov, and C. Rödel, “Influence of surface waves on plasma high-order harmonic generation,” Phys. Rev. Lett.108, 125002 (2012). [CrossRef] [PubMed]
  40. T.-P. Yu, A. Pukhov, G. Shvets, and M. Chen, “Stable laser-driven proton beam acceleration from a two-ion-species ultrathin foil,” Phys. Rev. Lett.105, 065002 (2010). [CrossRef] [PubMed]
  41. T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett.92, 175003 (2004). [CrossRef] [PubMed]
  42. L. L. Ji, B. F. Shen, X. M. Zhang, F. C. Wang, Z. Y. Jin, C. Q. Xia, M. Wen, W. P. Wang, J. C. Xu, and M. Y. Yu, “Generating quasi-single-cycle relativistic laser pulses by laser-foil interaction,” Phys. Rev. Lett.103, 215005 (2009). [CrossRef]
  43. G. D. Tsakiris, K. Eidmann, J. M. ter Vehn, and F. Krausz, “Route to intense single attosecond pulses,” New J. Phys.8, 19 (2006). [CrossRef]
  44. J. Zheng, Z.-M. Sheng, J. Zhang, M. Chen, and Y.-Y. Ma, “Effects of laser intensities and target shapes on attosecond pulse generation from irradiated solid surfaces,” Chin. Phys. Lett.23, 377–380 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited