OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32032–32039

Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source

Utsav D. Dave, Sarah Uvin, Bart Kuyken, Shankar Selvaraja, Francois Leo, and Gunther Roelkens  »View Author Affiliations

Optics Express, Vol. 21, Issue 26, pp. 32032-32039 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1178 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A 1000 nm wide supercontinuum, spanning from 1470 nm in the telecom band to 2470 nm in the mid-infrared is demonstrated in a 800 nm x 220 nm 1 cm long hydrogenated amorphous silicon strip waveguide. The pump source was a picosecond Thulium doped fiber laser centered at 1950 nm. The real part of the nonlinear parameter of this waveguide at 1950 nm is measured to be 100 ± 10 W−1m−1, while the imaginary part of the nonlinear parameter is measured to be 1.2 ± 0.2 W−1m−1. The supercontinuum is stable over a period of at least several hours, as the hydrogenated amorphous silicon waveguides do not degrade when exposed to the high power picosecond pulse train.

© 2013 Optical Society of America

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(190.0190) Nonlinear optics : Nonlinear optics
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: October 16, 2013
Revised Manuscript: December 10, 2013
Manuscript Accepted: December 11, 2013
Published: December 17, 2013

Utsav D. Dave, Sarah Uvin, Bart Kuyken, Shankar Selvaraja, Francois Leo, and Gunther Roelkens, "Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source," Opt. Express 21, 32032-32039 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett.26(9), 608–610 (2001). [CrossRef] [PubMed]
  3. T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett.32(10), 906–907 (1996). [CrossRef]
  4. T. Nakasyotani, H. Toda, T. Kuri, and K. Kitayama, “Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source,” J. Lightwave Technol.24(1), 404–410 (2006). [CrossRef]
  5. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92(3), 367–378 (2008). [CrossRef]
  6. Y. Liu, M. D. King, H. Tu, Y. Zhao, and S. A. Boppart, “Broadband nonlinear vibrational spectroscopy by shaping a coherent fiber supercontinuum,” Opt. Express21(7), 8269–8275 (2013). [CrossRef] [PubMed]
  7. S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B75(6-7), 799–802 (2002). [CrossRef]
  8. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express16(19), 14938–14944 (2008). [CrossRef] [PubMed]
  9. C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-spanning supercontinuum generation in in situ tapered As₂S₃ fiber pumped by a thulium-doped fiber laser,” Opt. Lett.38(15), 2865–2868 (2013). [CrossRef] [PubMed]
  10. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011).
  11. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett.37(10), 1685–1687 (2012). [CrossRef] [PubMed]
  12. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett.36(19), 3912–3914 (2011). [CrossRef] [PubMed]
  13. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011). [CrossRef] [PubMed]
  14. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36(4), 552–554 (2011). [CrossRef] [PubMed]
  15. K. Ikeda, Y. M. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express15(26), 17761–17771 (2007). [CrossRef] [PubMed]
  16. K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett.37(8), 1331–1333 (2012). [CrossRef] [PubMed]
  17. S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett.37(8), 1382–1384 (2012). [CrossRef] [PubMed]
  18. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express18(9), 8998–9005 (2010). [CrossRef] [PubMed]
  19. K.-Y. Wang, K. G. Petrillo, M. A. Foster, and A. C. Foster, “Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides,” Opt. Express20(22), 24600–24606 (2012). [CrossRef] [PubMed]
  20. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19(26), B146–B153 (2011). [CrossRef] [PubMed]
  21. J. Matres, G. C. Ballesteros, P. Gautier, J. M. Fédéli, J. Martí, and C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express21(4), 3932–3940 (2013). [CrossRef] [PubMed]
  22. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express20(20), 22609–22615 (2012). [CrossRef] [PubMed]
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  24. G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express3(9), 1523–1536 (2013). [CrossRef]
  25. H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys.70(7), 3992–3994 (1991). [CrossRef]
  26. L. Shen, N. Healy, P. Mehta, T. D. Day, J. R. Sparks, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core fibers towards the mid-infrared regime,” Opt. Express21(11), 13075–13083 (2013). [CrossRef] [PubMed]
  27. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett.32(14), 2031–2033 (2007). [CrossRef] [PubMed]
  28. F. Leo, U. D. Dave, B. Kuyken, S. Keyvaninia, and G. Roelkens, “Measurement and tuning of the chromatic dispersion around the half band gap spectral region of a silicon photonic wire,” Opt. Lett. (submitted).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited