OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32111–32122

Performance of parametric spectro-temporal analyzer (PASTA)

Chi Zhang, Xiaoming Wei, and Kenneth K. Y. Wong  »View Author Affiliations

Optics Express, Vol. 21, Issue 26, pp. 32111-32122 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2982 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Parametric spectro-temporal analyzer (PASTA) is an entirely new wavelength resolving modality that focuses the spectral information on the temporal axis, enables ultrafast frame rate, and provides comparable resolution and sensitivity to the state-of-art optical spectrum analyzer (OSA). Generally, spectroscopy relies on the allocation of the spectrum onto the spatial or temporal domain, and the Czerny-Turner monochromator based conventional OSA realizes the spatial allocation by a dispersive grating, while the mechanical rotation limits its operation speed. On the other hand, the PASTA system performs the spectroscopy function by a time-lens focusing mechanism, which all-optically maps the spectral information on the temporal axis, and realizes the single-shot spectrum acquisition. Therefore, the PASTA system provides orders of magnitude improvement on the frame rate, as high as megahertz or even gigahertz in principle. In addition to the implementation of the PASTA system, in this paper, we will primarily discuss its performance, including the tradeoff between the frame rate and the wavelength range, factors that affect the wavelength resolution, the conversion efficiency, the power saturation and the polarization sensitivity. Detection bandwidth and high-order dispersion introduced limitations are also under investigation. All these analyses not only provide an overall guideline for the PASTA design, but also help future research in improving and optimizing this new spectrum resolving technology.

© 2013 Optical Society of America

OCIS Codes
(110.2350) Imaging systems : Fiber optics imaging
(120.4140) Instrumentation, measurement, and metrology : Monochromators
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:

Original Manuscript: October 28, 2013
Revised Manuscript: December 12, 2013
Manuscript Accepted: December 12, 2013
Published: December 18, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Chi Zhang, Xiaoming Wei, and Kenneth K. Y. Wong, "Performance of parametric spectro-temporal analyzer (PASTA)," Opt. Express 21, 32111-32122 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of Instrumental Analysis, 6th ed. (Thomson Brooks/Cole, 2007).
  2. D. Derickson, ed., Fiber Optic, Test and Measurement (Prentice Hall, 1998).
  3. M. Czerny and A. F. Turner, “Uber den Astigmatismus bei Spiegelspektrometern,” Z. Phys.61(11–12), 792–797 (1930). [CrossRef]
  4. A. B. Shafer, L. R. Megill, and L. A. Droppleman, “Optimization of the Czerny–Turner spectrometer,” J. Opt. Soc. Am.54(7), 879–887 (1964). [CrossRef]
  5. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Direct measurement of the instantaneous linewidth of rapidly wavelength-swept lasers,” Opt. Lett.35(22), 3733–3735 (2010). [CrossRef] [PubMed]
  6. C. Zhang, K. K. Y. Cheung, P. C. Chui, K. K. Tsia, and K. K. Y. Wong, “Fast swept-source generation based on fiber optical parametric amplifier,” in Conference on Lasers and Electro-Optics (2011). [CrossRef]
  7. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000). [CrossRef]
  8. L. N. Binh and N. Q. Ngo, Ultra-Fast Fiber Lasers: Principles and Applications with MATLAB® Models (CRC Press, 2011).
  9. I. V. Rubtsov, R. M. Russo, T. Albers, P. Deria, D. E. Luzzi, and M. J. Therien, “Visible and near-infrared excited-state dynamics of single-walled carbon nanotubes,” Appl. Phys. A Mater. Sci. Process.79(7), 1747–1751 (2004). [CrossRef]
  10. J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett.91(16), 161105 (2007). [CrossRef]
  11. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics2(1), 48–51 (2008). [CrossRef]
  12. J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett.92(11), 111102 (2008). [CrossRef]
  13. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009). [CrossRef]
  14. G. P. Agrawal, Fiber Optic Communication Systems, 3rd ed. (Wiley-Interscience, 2002).
  15. http://tmi.yokogawa.com/products/optical-measuring-instruments/optical-spectrum-analyzer/aq6370c-optical-spectrum-analyzer/ .
  16. J. W. Goodman, Introduction To Fourier Optics, 3rd ed. (Roberts and Company, 2005).
  17. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30(8), 1951–1963 (1994). [CrossRef]
  18. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64(3), 270–272 (1994). [CrossRef]
  19. C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric Spectro-Temporal Analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep.3, 2064 (2013). [PubMed]
  20. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature456(7218), 81–84 (2008). [CrossRef] [PubMed]
  21. C. Zhang, K. K. Y. Cheung, P. C. Chui, K. K. Tsia, and K. K. Y. Wong, “Fiber optical parametric amplifier with high-speed swept pump,” IEEE Photonics Technol. Lett.23(14), 1022–1024 (2011). [CrossRef]
  22. C. V. Bennett and B. H. Kolner, “Aberrations in temporal imaging,” IEEE J. Quantum Electron.37(1), 20–32 (2001). [CrossRef]
  23. C. Zhang, P. C. Chui, and K. K. Y. Wong, “Comparison of the state-of-art phase modulators and parametric mixers in time-lens applications under different repetition rates,” accepted by Applied Optics (available online).
  24. M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wide-Band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10(5), 1133–1141 (2004). [CrossRef]
  25. C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging—Part I: System configurations,” IEEE J. Quantum Electron.36(4), 430–437 (2000). [CrossRef]
  26. C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging—Part II: System performance,” IEEE J. Quantum Electron.36(6), 649–655 (2000). [CrossRef]
  27. N. Yoshizawa and T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol.11(10), 1518–1522 (1993). [CrossRef]
  28. K. K. Y. Wong, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization-independent one-pump fiber optical parametric amplifier,” IEEE Photonics Technol. Lett.14(11), 1506–1508 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited