OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32123–32129

Integrated CARS source based on seeded four-wave mixing in silicon nitride

Jörn P. Epping, Michael Kues, Peter J.M. van der Slot, Chris J. Lee, Carsten Fallnich, and Klaus-J. Boller  »View Author Affiliations

Optics Express, Vol. 21, Issue 26, pp. 32123-32129 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1354 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theoretical investigation of an integrated nonlinear light source for coherent anti-Stokes Raman scattering (CARS) based on silicon nitride waveguides. Wavelength tunable and temporally synchronized signal and idler pulses are obtained by using seeded four-wave mixing. We find that the calculated input pump power needed for nonlinear wavelength generation is more than one order of magnitude lower than in previously reported approaches based on optical fibers. The tuning range of the wavelength conversion was calculated to be 1418 nm to 1518 nm (idler) and 788 nm to 857 nm (signal), which corresponds to a coverage of vibrational transitions from 2350 cm−1 to 2810 cm−1. A maximum conversion efficiency of 19.1% at a peak pump power of 300 W is predicted.

© 2013 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(190.0190) Nonlinear optics : Nonlinear optics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(180.5655) Microscopy : Raman microscopy

ToC Category:
Integrated Optics

Original Manuscript: November 8, 2013
Revised Manuscript: December 9, 2013
Manuscript Accepted: December 9, 2013
Published: December 18, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Jörn P. Epping, Michael Kues, Peter J.M. van der Slot, Chris J. Lee, Carsten Fallnich, and Klaus-J. Boller, "Integrated CARS source based on seeded four-wave mixing in silicon nitride," Opt. Express 21, 32123-32129 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Hall and A. C. Eckbreth, “Combustion diagnosis by coherent anti-Stokes Raman spectroscopy (CARS),” Opt. Eng.20(4), 494–500 (1981).
  2. A. Portnov, S. Rosenwaks, and I. Bar, “Detection of particles of explosives via backward coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett.93, 041115 (2008). [CrossRef]
  3. G. Beadie, Z. E. Sariyanni, Y. V. Rostovtsev, T. Opatrny, J. Reintjes, and M. O. Scully, “Towards a FAST CARS anthrax detector: coherence preparation using simultaneous femtosecond laser pulses,” Opt. Commun.244, 423–430 (2005). [CrossRef]
  4. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto Calif)1(1), 883–909 (2008). [CrossRef]
  5. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.29(23), 2701–2703 (2004). [CrossRef] [PubMed]
  6. I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett.93, 201103 (2008). [CrossRef]
  7. M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett.89, 251116 (2006). [CrossRef]
  8. E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett.27(13), 1168–1170 (2002).
  9. E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.38(20), 4154–4157 (2013). [CrossRef] [PubMed]
  10. S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. S. Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.37(10), 1652–1654 (2012). [CrossRef] [PubMed]
  11. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Allfiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express20(4), 4484–4893 (2012). [CrossRef] [PubMed]
  12. T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express20(11), 12004–12013 (2012). [CrossRef] [PubMed]
  13. A. Ymeti, J. S. Kanger, J. Grevea, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20, 1417–1421 (2005). [CrossRef]
  14. R. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10, 015804 (2013). [CrossRef]
  15. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21(1), 1335–1343 (2013). [CrossRef] [PubMed]
  16. C. Camp, S. Yegnanarayanan, A. Eftekhar, H. Sridhar, and A. Adibi, “Multiplex coherent anti-Stokes Raman scattering (MCARS) for chemically sensitive, label-free flow cytometry,” Opt. Express17(25), 22879–22889 (2009). [CrossRef]
  17. M. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006). [CrossRef] [PubMed]
  18. F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express17(5), 35414–35420 (2009).
  19. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics1(12), 737–740 (2008). [CrossRef]
  20. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010). [CrossRef]
  21. I. Agha, M. Davanço, B. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in SiNx waveguides,” Opt. Lett.37(14), 2997–2999 (2012). [CrossRef] [PubMed]
  22. K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express21(19), 22829–22833 (2013). [CrossRef] [PubMed]
  23. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguide,” Opt. Express16(17), 12987–12994 (2008). [CrossRef] [PubMed]
  24. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981).
  25. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19(4), 3163–3174 (2011). [CrossRef] [PubMed]
  26. G.P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  27. M. Kues, N. Brauckmann, T. Walbaum, P. Gross, and C. Fallnich, “Nonlinear dynamics of femtosecond super-continuum generation with feedback,” Opt. Express17(18), 15827–15841 (2009). [CrossRef] [PubMed]
  28. G. Genty, S. Coen, and J .M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B.24, 1771–1785 (2007). [CrossRef]
  29. L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun.281, 3781–3785 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited