OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32130–32140

Suppressing phase decoherence of a single atom qubit with Carr-Purcell-Meiboom-Gill sequence

Shi Yu, Peng Xu, Xiaodong He, Min Liu, Jin Wang, and Mingsheng Zhan  »View Author Affiliations

Optics Express, Vol. 21, Issue 26, pp. 32130-32140 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1046 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate the strong suppression of dephasing of a qubit stored in a single 87Rb atom in an optical dipole trap by using Carr-Purcell-Meiboom-Gill (CPMG) pulse sequences. Regarded as a repetition of spin echo, CPMG sequence is an excellent choice for suppressing both inhomogeneous and homogeneous phase decoherence mechanisms. In comparison with atomic ensembles, the dephasing due to atomic collisions disappears for individual atoms. Thus, CPMG suppression effect is efficient with a few π-pulses. In our trap with 830 nm wavelength and 0.7 mK potential depth, the reversible inhomogeneous dephasing time is T 2 * = 1.4 ms. We obtain the homogeneous dephasing time of T′2 = 103 ms in the spin echo process. By employing CPMG sequence with pulse number n = 6, the homogeneous dephasing is further suppressed by a factor of 3, and its corresponding coherence time is extended to T′2 = 304 ms.

© 2013 OSA

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(140.3550) Lasers and laser optics : Lasers, Raman
(270.5585) Quantum optics : Quantum information and processing
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Atomic and Molecular Physics

Original Manuscript: November 7, 2013
Revised Manuscript: December 5, 2013
Manuscript Accepted: December 9, 2013
Published: December 18, 2013

Shi Yu, Peng Xu, Xiaodong He, Min Liu, Jin Wang, and Mingsheng Zhan, "Suppressing phase decoherence of a single atom qubit with Carr-Purcell-Meiboom-Gill sequence," Opt. Express 21, 32130-32140 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature464, 45–53 (2010). [CrossRef] [PubMed]
  3. M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the earth’s gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett.81, 971–974 (1998). [CrossRef]
  4. A. Peters, K. Y. Chung, and S. Chu, “Measurement of gravitational acceleration by dropping atoms,” Nature400, 849–852 (1999). [CrossRef]
  5. J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science315, 74–77 (2007). [CrossRef] [PubMed]
  6. M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys.82, 2313–2363 (2010). [CrossRef]
  7. L. You, X. X. Yi, and X. H. Su, “Quantum logic between atoms inside a high-Q optical cavity,” Phys. Rev. A67, 032308 (2003). [CrossRef]
  8. D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett.82, 1975–1978 (1999). [CrossRef]
  9. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett.104, 010503 (2010). [CrossRef] [PubMed]
  10. T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett.104, 010502 (2010). [CrossRef] [PubMed]
  11. A. Steffen, A. Alberti, W. Alt, N. Belmechri, S. Hild, M. Karski, A. Widera, and D. Meschede, “Digital atom interferometer with single particle control on a discretized space-time geometry,” Proc. Natl. Acad. Sci. U. S. A.109, 9770–9774 (2012). [CrossRef] [PubMed]
  12. L. P. Parazzoli, A. M. Hankin, and G. W. Biedermann, “Observation of free-space single-atom matter wave interference,” Phys. Rev. Lett.109, 230401 (2012). [CrossRef]
  13. R. A. Cline, J. D. Miller, M. R. Matthews, and D. J. Heinzen, “Spin relaxation of optically trapped atoms by light scattering,” Opt. Lett.19, 207–209 (1994). [CrossRef] [PubMed]
  14. S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, A. Rauschenbeutel, and D. Meschede, “Analysis of dephasing mechanisms in a standing-wave dipole trap,” Phys. Rev. A72, 023406 (2005). [CrossRef]
  15. C. P. Slichter, Principles of Nuclear Magnetic Resonance, 3rd ed. (Springer, 1990).
  16. H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, and A. Yacoby, “Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs,” Nat. Phys.7, 109–113 (2011). [CrossRef]
  17. J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch, D. G. Cory, Y. Nakamura, J.-S. Tsai, and W. D. Oliver, “Noise spectroscopy through dynamical decoupling with a superconducting flux qubit,” Nat. Phys.7, 565–570 (2011). [CrossRef]
  18. C. A. Ryan, J. S. Hodges, and D. G. Cory, “Robust decoupling techniques to extend quantum coherence in diamond,” Phys. Rev. Lett.105, 200402 (2010). [CrossRef]
  19. J. F. Du, X. Rong, N. Zhao, Y. Wang, J. H. Yang, and R. B. Liu, “Preserving electron spin coherence in solids by optimal dynamical decoupling,” Nature461, 1265–1268 (2009). [CrossRef] [PubMed]
  20. L.-A. Wu and D. A. Lidar, “Overcoming quantum noise in optical fibers,” Phys. Rev. A70, 062310 (2004). [CrossRef]
  21. S. Damodarakurup, M. Lucamarini, G. Di Giuseppe, D. Vitali, and P. Tombesi, “Experimental inhibition of decoherence on flying qubits via ‘Bang-Bang’ control,” Phys. Rev. Lett.103, 040502 (2009). [CrossRef]
  22. M. F. Andersen, A. Kaplan, T. Grünzweig, and N. Davidson, “Suppression of dephasing of optically trapped atoms,” Phys. Rev. A70, 013405 (2004). [CrossRef]
  23. Y. Sagi, I. Almog, and N. Davidson, “Process tomography of dynamical decoupling in a dense cold atomic ensemble,” Phys. Rev. Lett.105, 053201 (2010). [CrossRef] [PubMed]
  24. M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M. Itano, and J. J. Bollinger, “Optimized dynamical decoupling in a model quantum memory,” Nature458, 996–1000 (2009). [CrossRef] [PubMed]
  25. D. J. Szwer, S. C. Webster, A. M. Steane, and D. M. Lucas, “Keeping a single qubit alive by experimental dynamic decoupling,” J. Phys. B At. Mol. Opt. Phys.44, 025501 (2011). [CrossRef]
  26. S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede, “Coherence properties and quantum state transportation in an optical conveyor belt,” Phys. Rev. Lett.91, 213002 (2003). [CrossRef] [PubMed]
  27. M. P. A. Jones, J. Beugnon, A. Gaëtan, J. Zhang, G. Messin, A. Browaeys, and P. Grangier, “Fast quantum state control of a single trapped neutral atom,” Phys. Rev. A75, 040301 (2007). [CrossRef]
  28. J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A. Jones, G. Messin, A. Browaeys, and P. Grangier, “Two-dimensional transport and transfer of a single atomic qubit in optical tweezers,” Nat. Phys.3, 696–699 (2007). [CrossRef]
  29. C.-S. Chuu and C. Zhang, “Suppression of phase decoherence in a single atomic qubit,” Phys. Rev. A80, 032307 (2009). [CrossRef]
  30. X. D. He, S. Yu, P. Xu, J. Wang, and M. S. Zhan, “Combining red and blue-detuned optical potentials to form a Lamb-Dicke trap for a single neutral atom,” Opt. Express20, 3711–3724 (2012). [CrossRef] [PubMed]
  31. N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett.89, 023005 (2002). [CrossRef] [PubMed]
  32. D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett.96, 063001 (2006). [CrossRef] [PubMed]
  33. S. Pasini and G. S. Uhrig, “Optimized dynamical decoupling for power-law noise spectra,” Phys. Rev. A81, 012309 (2010). [CrossRef]
  34. P. Xu, X. D. He, J. Wang, and M. S. Zhan, “Trapping a single atom in a blue detuned optical bottle beam trap,” Opt. Lett.35, 2164–2166 (2010). [CrossRef] [PubMed]
  35. G. Li, S. Zhang, L. Isenhower, K. Maller, and M. Saffman, “Crossed vortex bottle beam trap for single-atom qubits,” Opt. Lett.37, 851–853 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited