OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32141–32150

Mode excitation and supercontinuum generation in a few-mode suspended-core fiber

Igor Shavrin, Steffen Novotny, and Hanne Ludvigsen  »View Author Affiliations

Optics Express, Vol. 21, Issue 26, pp. 32141-32150 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2487 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have studied the excitation of higher-order modes and their role in supercontinuum generation in a three-hole silica suspended-core fiber, both experimentally and numerically. We find that pump coupling optimized to highest transmission can yield substantial excitation of higher order modes. With up to about 40% of the pump power coupled to higher order modes, we have studied supercontinuum generation in this fiber. In agreement with experiments, simulation results based on the multimode generalized nonlinear Schrödinger equation confirm that the spectral width is determined by spectral broadening in the fundamental mode, whereas the numerical analysis reveals that intermodal nonlinear interactions are strongly suppressed.

© 2013 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.4005) Fiber optics and optical communications : Microstructured fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: November 21, 2013
Revised Manuscript: December 11, 2013
Manuscript Accepted: December 11, 2013
Published: December 18, 2013

Igor Shavrin, Steffen Novotny, and Hanne Ludvigsen, "Mode excitation and supercontinuum generation in a few-mode suspended-core fiber," Opt. Express 21, 32141-32150 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University Press, New York, USA, 2010). [CrossRef]
  2. P. Russell, “Photonic crystal fibers,” Science (New York, N.Y.) 299, 358–362 (2003). [CrossRef] [PubMed]
  3. J. C. Knight, “Photonic crystal fibres,” Nature424, 847–851 (2003). [CrossRef] [PubMed]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25, 25–27 (2000). [CrossRef]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett.25, 796–798 (2000). [CrossRef]
  6. A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Nonlinear generation of very high-order UV modes in microstructured fibers,” Opt. Express11, 910–918 (2003). [CrossRef] [PubMed]
  7. S. O. Konorov, E. E. Serebryannikov, A. M. Zheltikov, P. Zhou, A. P. Tarasevitch, and D. von der Linde, “Mode-controlled colors from microstructure fibers,” Opt. Express12, 730–735 (2004). [CrossRef] [PubMed]
  8. C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett.32, 2173–2175 (2007). [CrossRef] [PubMed]
  9. R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, “Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber,” Opt. Express16, 2147–2152 (2008). [CrossRef] [PubMed]
  10. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B25, 1645–1654 (2008). [CrossRef]
  11. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express17, 6134–6147 (2009). [CrossRef] [PubMed]
  12. J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012). [CrossRef]
  13. B. Zwan, S. Legge, J. Holdsworth, and B. King, “Spatio-spectral analysis of supercontinuum generation in higher order electromagnetic modes of photonic crystal fiber,” Opt. Express21, 834–839 (2013). [CrossRef] [PubMed]
  14. J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers,” Opt. Express21, 10764–10771 (2013). [CrossRef] [PubMed]
  15. R. Khakimov, I. Shavrin, S. Novotny, M. Kaivola, and H. Ludvigsen, “Numerical solver for supercontinuum generation in multimode optical fibers,” Opt. Express21, 14388–14398 (2013). [CrossRef] [PubMed]
  16. Y. Chen, Z. Chen, W. J. Wadsworth, and T. A. Birks, “Nonlinear optics in the LP02 higher-order mode of a fiber,” Opt. Express21, 17786–17799 (2013). [CrossRef] [PubMed]
  17. Y. Chen, W. J. Wadsworth, and T. A. Birks, “Ultraviolet four-wave mixing in the LP02 fiber mode,” Opt. Lett.38, 3747–3750 (2013). [CrossRef] [PubMed]
  18. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002). [CrossRef]
  19. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express16, 8427–8432 (2008). [CrossRef] [PubMed]
  20. T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V, “Sensing with suspended-core optical fibers,” Optical Fiber Technology16, 343–356 (2010). [CrossRef]
  21. O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. Lobo Ribeiro, “Suspended-core fibers for sensing applications,” Photonic Sens.2, 118–126 (2012). [CrossRef]
  22. C. Wang, W. Jin, J. Ma, Y. Wang, H. L. Ho, and X. Shi, “Suspended core photonic microcells for sensing and device applications,” Opt. Lett.38, 1881–1883 (2013). [CrossRef] [PubMed]
  23. L. Dong, B. K. Thomas, and L. Fu, “Highly nonlinear silica suspended core fibers,” Opt. Express16, 16423–16430 (2008). [CrossRef] [PubMed]
  24. L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express16, 19629–19642 (2008). [CrossRef] [PubMed]
  25. A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express19, 7742–7749 (2011). [CrossRef] [PubMed]
  26. A. Hartung, A. M. Heidt, and H. Bartelt, “Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,” Opt. Express19, 12275–12283 (2011). [CrossRef] [PubMed]
  27. I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express20, 27083–27093 (2012). [CrossRef] [PubMed]
  28. W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express21, 9573–9583 (2013). [CrossRef] [PubMed]
  29. M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A118, 1127–1132 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited