OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32199–32206

Frequency modulation spectroscopy with a THz quantum-cascade laser

R. Eichholz, H. Richter, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers  »View Author Affiliations


Optics Express, Vol. 21, Issue 26, pp. 32199-32206 (2013)
http://dx.doi.org/10.1364/OE.21.032199


View Full Text Article

Enhanced HTML    Acrobat PDF (875 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a terahertz spectrometer for high-resolution molecular spectroscopy based on a quantum-cascade laser. High-frequency modulation (up to 50 MHz) of the laser driving current produces a simultaneous modulation of the frequency and amplitude of the laser output. The modulation generates sidebands, which are symmetrically positioned with respect to the laser carrier frequency. The molecular transition is probed by scanning the sidebands across it. In this way, the absorption and the dispersion caused by the molecular transition are measured. The signals are modeled by taking into account the simultaneous modulation of the frequency and amplitude of the laser emission. This allows for the determination of the strength of the frequency as well as amplitude modulation of the laser and of molecular parameters such as pressure broadening.

© 2013 Optical Society of America

OCIS Codes
(260.3090) Physical optics : Infrared, far
(300.6380) Spectroscopy : Spectroscopy, modulation
(140.3518) Lasers and laser optics : Lasers, frequency modulated
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopy

History
Original Manuscript: September 16, 2013
Manuscript Accepted: November 16, 2013
Published: December 19, 2013

Citation
R. Eichholz, H. Richter, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, "Frequency modulation spectroscopy with a THz quantum-cascade laser," Opt. Express 21, 32199-32206 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-26-32199


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Mittelman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B67(3), 379–390 (1998). [CrossRef]
  2. C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B92(3), 327–333 (2008). [CrossRef]
  3. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A54(2), 197–236 (1998). [CrossRef]
  4. I. Linnerud, P. Kaspersen, and T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B67(3), 297–305 (1998). [CrossRef]
  5. S. Heyminck, U. U. Graf, R. Güsten, J. Stutzki, H.-W. Hübers, and P. Hartogh, “GREAT: the SOFIA high-frequency heterodyne instrument,” Astron. Astrophys.542, L1 (2012). [CrossRef]
  6. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett.5(1), 15–17 (1980). [CrossRef] [PubMed]
  7. D. E. Cooper and R. E. Warren, “Frequency modulation spectroscopy with lead-salt diode lasers: a comparison of single-tone and two-tone techniques,” Appl. Opt.26(17), 3726–3732 (1987). [CrossRef] [PubMed]
  8. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B32(3), 145–152 (1983). [CrossRef]
  9. L.-G. Wang, D. A. Tate, H. Riris, and T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B6(5), 871–876 (1989). [CrossRef]
  10. S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B85(2–3), 223–229 (2006). [CrossRef]
  11. H.-W. Hübers, R. Eichholz, S. G. Pavlov, and H. Richter, “High resolution terahertz spectroscopy with quantum cascade lasers,” J. Infrared Millimeter Terahertz Waves34(5–6), 325–341 (2013). [CrossRef]
  12. C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics7(9), 691–701 (2013). [CrossRef]
  13. H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett.89(6), 061115 (2006). [CrossRef]
  14. R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett.99(14), 141112 (2011). [CrossRef]
  15. L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors13(3), 3331–3340 (2013). [CrossRef] [PubMed]
  16. M. Gehrtz, W. Lenth, A. T. Young, and H. S. Johnston, “High-frequency-modulation spectroscopy with a lead-salt diode laser,” Opt. Lett.11(3), 132–134 (1986). [CrossRef] [PubMed]
  17. W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron.20(9), 1045–1050 (1984). [CrossRef]
  18. H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express18(10), 10177–10187 (2010). [CrossRef] [PubMed]
  19. W. C. B. Peatman, P. A. D. Wood, D. Porterfield, T. W. Crowe, and M. J. Rooks, “Quarter‐micrometer GaAs Schottky barrier diode with high video responsivity at 118 μm,” Appl. Phys. Lett.61(3), 294–296 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited