OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32306–32312

Scalable photonic crystal chips for high sensitivity protein detection

Feng Liang, Nigel Clarke, Parth Patel, Marko Loncar, and Qimin Quan  »View Author Affiliations


Optics Express, Vol. 21, Issue 26, pp. 32306-32312 (2013)
http://dx.doi.org/10.1364/OE.21.032306


View Full Text Article

Enhanced HTML    Acrobat PDF (1145 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Scalable microfabrication technology has enabled semiconductor and microelectronics industries, among other fields. Meanwhile, rapid and sensitive bio-molecule detection is increasingly important for drug discovery and biomedical diagnostics. In this work, we designed and demonstrated that photonic crystal sensor chips have high sensitivity for protein detection and can be mass-produced with scalable deep-UV lithography. We demonstrated label-free detection of carcinoembryonic antigen from pg/mL to μg/mL, with high quality factor photonic crystal nanobeam cavities.

© 2013 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(230.5298) Optical devices : Photonic crystals

ToC Category:
Sensors

History
Original Manuscript: October 14, 2013
Revised Manuscript: December 3, 2013
Manuscript Accepted: December 4, 2013
Published: December 19, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Feng Liang, Nigel Clarke, Parth Patel, Marko Loncar, and Qimin Quan, "Scalable photonic crystal chips for high sensitivity protein detection," Opt. Express 21, 32306-32312 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-26-32306


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Engvall and P. Perlmann, “Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G,” Immunochemistry8, 871–874 (1971). [CrossRef] [PubMed]
  2. B. K. Van Weeman and A. H. Schuurs, “Immunoassay using antigen-enzyme conjugates,” FEBS. Lett15, 232–236 (1971). [CrossRef]
  3. D. J. Cahill, “Protein and antibody arrays and their medical applications,” J. Immunol. Methods250, 81–91 (2001). [CrossRef] [PubMed]
  4. T. Kodadek, “Protein microarrays: prospects and problems,” Chem. Biol.8, 105–115 (2001). [CrossRef] [PubMed]
  5. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96, 203102 (2010). [CrossRef]
  6. K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003). [CrossRef] [PubMed]
  7. M. Loncar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82, 4648–4650 (2003). [CrossRef]
  8. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett.29, 1093–1095 (2004). [CrossRef] [PubMed]
  9. S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express16, 8174–8180 (2008). [CrossRef] [PubMed]
  10. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett.94, 063503 (2009). [CrossRef]
  11. B. W. Wang, M. A. Dundar, R. Notzel, F. Karouta, S. L. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97, 151105 (2010). [CrossRef]
  12. T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “Pillar-array based optical sensor,” Opt. Express18, 5420–5425 (2010). [CrossRef] [PubMed]
  13. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19, 18529–18542 (2011). [CrossRef] [PubMed]
  14. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45, 6071–6077 (2006). [CrossRef]
  15. D. Yang, H. Tian, Y. Ji, and Q. Quan, “Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors,” J. Opt. Soc. Am. B30, 2027–2031 (2013). [CrossRef]
  16. D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” submitted.
  17. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5, 591–596 (2008). [CrossRef] [PubMed]
  18. A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem.81, 9499–9506 (2009). [CrossRef] [PubMed]
  19. J. M. Goddard and D. Erickson, “Bioconjugation techniques for microfluidic biosensors,” Anal. Bioanal. Chem.394, 469–479 (2009). [CrossRef] [PubMed]
  20. S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem.141, 13–19 (2009). [CrossRef]
  21. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE Sel. Top. Quantum Electron.16, 654–661 (2010). [CrossRef]
  22. M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27, 101–105 (2011). [CrossRef] [PubMed]
  23. S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron.26, 4024–4031 (2011). [CrossRef] [PubMed]
  24. S. Chakravarty, Y. Zou, W. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron.38, 170–176 (2012). [CrossRef] [PubMed]
  25. M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem.84, 793–821 (2012). [CrossRef]
  26. W. W. Shia and R. C. Bailey, “Single domain antibodies for the detection of ricin using silicon,” Anal. Chem.85, 805–810 (2013). [CrossRef]
  27. S. Hachuda, S. Otsuka, S. Kita, T. Isono, M. Narimatsu, K. Watanabe, Y. Goshima, and T. Baba, “Selective detection of sub-atto-molar Streptavidin in 1013-fold impure sample using photonic crystal nanolaser sensors,” Opt. Express21, 12815–12821 (2013). [CrossRef]
  28. V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013). [CrossRef]
  29. S. Maestranzi, R. Przemioslo, H. Mitchell, and R. A. Sherwood, “The effect of benign and malignant liver disease on the tumour markers CA19-9 and CEA,” Ann. Clin. Biochem.35, 99–103 (1998). [PubMed]
  30. I. Langmuir, “The adsorption of gases on plane surface of glass, mica and platinum,” The Research Laboratory of The General Electric Company: 1361–1402 (1918).
  31. R. Abraham, S. Buxbaum, L. John, R. Smith, C. Venti, and D. Michael, “Screening and kinetic analysis of recombinant anti-CEA antibody fragments,” J. Immunol. Meth.183, 119–125 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited