OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32327–32339

Scattering of a partially-coherent wave from a material circular cylinder

Milo W. Hyde, IV, Andrew E. Bogle, and Michael J. Havrilla  »View Author Affiliations

Optics Express, Vol. 21, Issue 26, pp. 32327-32339 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1203 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The case of a partially-coherent wave scattered from a material circular cylinder is investigated. Expressions for the TMz and TEz scattered-field cross-spectral density functions are derived by utilizing the plane-wave spectrum representation of electromagnetic fields and cylindrical wave transformations. From the analytical scattered-field cross-spectral density functions, the mean scattering widths are derived and subsequently validated via comparison with those computed from Method of Moments Monte Carlo simulations. The analytical relations as well as the simulation results are discussed and physically interpreted. Key insights are noted and subsequently analyzed.

© 2013 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(260.2110) Physical optics : Electromagnetic optics
(290.1350) Scattering : Backscattering
(350.4010) Other areas of optics : Microwaves
(290.2558) Scattering : Forward scattering
(290.5825) Scattering : Scattering theory

ToC Category:
Coherence and Statistical Optics

Original Manuscript: October 21, 2013
Revised Manuscript: December 4, 2013
Manuscript Accepted: December 6, 2013
Published: December 19, 2013

Milo W. Hyde, Andrew E. Bogle, and Michael J. Havrilla, "Scattering of a partially-coherent wave from a material circular cylinder," Opt. Express 21, 32327-32339 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  2. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, 1991).
  3. R. Harrington, Time-Harmonic Electromagnetic Fields (IEEE, 2001). [CrossRef]
  4. R. Harrington, Field Computation by Moment Methods (IEEE, 1993). [CrossRef]
  5. A. Peterson, S. Ray, and R. Mittra, Computational Methods for Electromagnetics (IEEE, 1997). [CrossRef]
  6. C. A. Balanis, Advanced Engineering Electromagnetics, 2nd ed. (Wiley, 2012).
  7. J. R. Wait, “Scattering of a plane wave from a circular dielectric cylinder at oblique incidence,” Can. J. Phys.33, 189–195 (1955). [CrossRef]
  8. M. Kerker and E. Matijević, “Scattering of electromagnetic waves from concentric infinite cylinders,” J. Opt. Soc. Am.51, 506–508 (1961). [CrossRef]
  9. J. Richmond, “Scattering by a dielectric cylinder of arbitrary cross section shape,” IEEE Trans. Antennas Propag.13, 334–341 (1965). [CrossRef]
  10. B. H. Henin, A. Z. Elsherbeni, and M. H. Al Sharkawy, “Oblique incidence plane wave scattering from an array of circular dielectric cylinders,” Prog. Electromagn. Res.68, 261–279 (2007). [CrossRef]
  11. S. Marin, “Computing scattering amplitudes for arbitrary cylinders under incident plane waves,” IEEE Trans. Antennas Propag.30, 1045–1049 (1982). [CrossRef]
  12. A. Madrazo and M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A12, 1298–1309 (1995). [CrossRef]
  13. R. Borghi, F. Gori, M. Santarsiero, F. Frezza, and G. Schettini, “Plane-wave scattering by a perfectly conducting circular cylinder near a plane surface: cylindrical-wave approach,” J. Opt. Soc. Am. A13, 483–493 (1996). [CrossRef]
  14. R. Borghi, F. Gori, M. Santarsiero, F. Frezza, and G. Schettini, “Plane-wave scattering by a set of perfectly conducting circular cylinders in the presence of a plane surface,” J. Opt. Soc. Am. A13, 2441–2452 (1996). [CrossRef]
  15. G. Videen and D. Ngo, “Light scattering from a cylinder near a plane interface: theory and comparison with experimental data,” J. Opt. Soc. Am. A14, 70–78 (1997). [CrossRef]
  16. M. Tateiba and Z. Q. Meng, “Wave scattering from conducting bodies embedded in random media—theory and numerical results,” Prog. Electromagn. Res.14, 317–361 (1996).
  17. Z. Q. Meng and M. Tateiba, “Radar cross sections of conducting elliptic cylinders embedded in strong continuous random media,” Waves Random Complex Media6, 335–345 (1996). [CrossRef]
  18. M. A. Ashraf and A. A. Rizvi, “Electromagnetic scattering from a random cylinder by moments method,” J. Electromagn. Waves Appl.25, 467–480 (2011). [CrossRef]
  19. S. Ahmed and Q. A. Naqvi, “Electromagnetic scattering from parallel perfect electromagnetic conductor cylinders of circular cross-sections using an iterative procedure,” J. Electromagn. Waves Appl.22, 987–1003 (2008). [CrossRef]
  20. M. Kluskens and E. Newman, “Scattering by a multilayer chiral cylinder,” IEEE Trans. Antennas Propag.39, 91–96 (1991). [CrossRef]
  21. J. Geng, R. W. Ziolkowski, R. Jin, and X. Liang, “Active cylindrical coated nano-particle antennas: polarization-dependent scattering properties,” J. Electromagn. Waves Appl.27, 1392–1406 (2013). [CrossRef]
  22. T. Kojima and Y. Yanagiuchi, “Scattering of an offset two-dimensional Gaussian beam wave by a cylinder,” J. Appl. Phys.50, 41–46 (1979). [CrossRef]
  23. S. Kozaki, “A new expression for the scattering of a Gaussian beam by a conducting cylinder,” IEEE Trans. Antennas Propag.30, 881–887 (1982). [CrossRef]
  24. M. Yokota, T. Takenaka, and O. Fukumitsu, “Scattering of a Hermite-Gaussian beam mode by parallel dielectric circular cylinders,” J. Opt. Soc. Am. A3, 580–586 (1986). [CrossRef]
  25. Z. W. L. Guo, “Electromagnetic scattering from a multilayered cylinder arbitrarily located in a Gaussian beam, a new recursive algorithms,” Prog. Electromagn. Res.18, 317–333 (1998). [CrossRef]
  26. X. M. Sun, H. H. Wang, and H. Y. Zhang, “Scattering by an infinite cylinder arbitrarily illuminated with a couple of Gaussian beams,” J. Electromagn. Waves Appl.24, 1329–1339 (2010). [CrossRef]
  27. A. Elsherbeni, M. Hamid, and G. Tian, “Iterative scattering of a Gaussian beam by an array of circular conducting and dielectric cylinders,” J. Electromagn. Waves Appl.7, 1323–1342 (1993). [CrossRef]
  28. H. Zhang and Y. Han, “Scattering of shaped beam by an infinite cylinder of arbitrary orientation,” J. Opt. Soc. Am. B25, 131–135 (2008). [CrossRef]
  29. K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A14, 3014–3025 (1997). [CrossRef]
  30. G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary-shaped beam,” Appl. Opt.36, 4292–4304 (1997). [CrossRef] [PubMed]
  31. G. Gouesbet, “Scattering of higher-order Gaussian beams by an infinite cylinder,” J. Opt.28, 45–65 (1997). [CrossRef]
  32. E. Zimmermann, R. Dändliker, N. Souli, and B. Krattiger, “Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach,” J. Opt. Soc. Am. A12, 398–403 (1995). [CrossRef]
  33. H. Zhang, Z. Huang, and Y. Shi, “Internal and near-surface electromagnetic fields for a uniaxial anisotropic cylinder illuminated with a Gaussian beam,” Opt. Express21, 15645–15653 (2013). [CrossRef] [PubMed]
  34. M. L. Marasinghe, M. Premaratne, and D. M. Paganin, “Coherence vortices in Mie scattering of statistically stationary partially coherent fields,” Opt. Express18, 6628–6641 (2010). [CrossRef] [PubMed]
  35. M. L. Marasinghe, M. Premaratne, D. M. Paganin, and M. A. Alonso, “Coherence vortices in Mie scattered nonparaxial partially coherent beams,” Opt. Express20, 2858–2875 (2012). [CrossRef] [PubMed]
  36. D. G. Fischer, T. van Dijk, T. D. Visser, and E. Wolf, “Coherence effects in Mie scattering,” J. Opt. Soc. Am. A29, 78–84 (2012). [CrossRef]
  37. J. Lindberg, T. Setälä, M. Kaivola, and A. T. Friberg, “Spatial coherence effects in light scattering from metallic nanocylinders,” J. Opt. Soc. Am. A23, 1349–1358 (2006). [CrossRef]
  38. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995). [CrossRef]
  39. J. W. Goodman, Statistical Optics (Wiley, 1985).
  40. B. G. Hoover and V. L. Gamiz, “Coherence solution for bidirectional reflectance distributions of surfaces with wavelength-scale statistics,” J. Opt. Soc. Am. A23, 314–328 (2006). [CrossRef]
  41. T. Hansen and A. Yaghjian, Plane-Wave Theory of Time-Domain Fields (IEEE, 1999). [CrossRef]
  42. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (World Scientific, 2006), 2nd ed. [CrossRef]
  43. C. A. Mack, “Analytic form for the power spectral density in one, two, and three dimensions,” J. Micro/Nanolithogr. MEMS MOEMS10, 040501 (2011). [CrossRef]
  44. It should be noted that no source can be spatially completely incoherent, i.e., ℓs= 0. The physical minimum value of ℓs is on the order of λ [1].
  45. X. Xiao and D. Voelz, “Wave optics simulation approach for partial spatially coherent beams,” Opt. Express14, 6986–6992 (2006). [CrossRef] [PubMed]
  46. RefractiveIndex.INFO, “RefractiveIndex.INFO Refractive index database, http://refractiveindex.info ,” (Retrieved on Jun. 25, 2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited