OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32377–32385

Self-sifting of chain plasmons: the complex optics of Au nanoparticle clusters

L. O. Herrmann, V. K. Valev, J. Aizpurua, and J. J. Baumberg  »View Author Affiliations

Optics Express, Vol. 21, Issue 26, pp. 32377-32385 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4307 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The strong enhancement of electrical fields in subnanometer gaps of self-assembled gold nanoparticle clusters holds great promise for large scale fabrication of sensitive optical sensing substrates. Due to the large number of involved nanoparticles, however, their optical response is complex and not easily accessible through numerical simulations. Here, we use hyperspectral supercontinuum spectroscopy to demonstrate how confined optical modes of well defined energies are supported by different areas of the cluster. Due to the strong resonant coupling in those regions, the cluster essentially acts as a nanoscale optical sieve which sorts incident light according to its wavelength.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.5820) Scattering : Scattering measurements
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:

Original Manuscript: October 3, 2013
Revised Manuscript: November 8, 2013
Manuscript Accepted: November 8, 2013
Published: December 20, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

L. O. Herrmann, V. K. Valev, J. Aizpurua, and J. J. Baumberg, "Self-sifting of chain plasmons: the complex optics of Au nanoparticle clusters," Opt. Express 21, 32377-32385 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I.  Hussain, M.  Brust, J.  Barauskas, A. I.  Cooper, “Controlled step growth of molecularly linked gold nanoparticles: from metallic monomers to dimers to polymeric nanoparticle chains,” Langmuir 25, 1934–1939 (2009). [CrossRef] [PubMed]
  2. M.  Grzelczak, J.  Vermant, E. M.  Furst, L. M.  Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010). [CrossRef] [PubMed]
  3. J. A.  Fan, C.  Wu, K.  Bao, J.  Bao, R.  Bardhan, N. J.  Halas, V. N.  Manoharan, P.  Nordlander, G.  Shvets, F.  Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1338 (2010). [CrossRef] [PubMed]
  4. R.  Jin, “Nanoparticle clusters light up in SERS,” Angew. Chem. Int. Edit. 49, 2826–2829 (2010). [CrossRef]
  5. R. W.  Taylor, T.-C.  Lee, O. A.  Scherman, R.  Esteban, J.  Aizpurua, F. M.  Huang, J. J.  Baumberg, S.  Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011). [CrossRef]
  6. S.  Kasera, F.  Biedermann, J. J.  Baumberg, O. A.  Scherman, S.  Mahajan, “Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs,” Nano Lett. 12, 5924–5928 (2012). [CrossRef] [PubMed]
  7. Á.  Sánchez-González, S.  Corni, B.  Mennucci, “Surface-enhanced fluorescence within a metal nanoparticle array: The role of solvent and plasmon couplings,” J. Phys. Chem. C 115, 5450–5460 (2011). [CrossRef]
  8. A. M.  Schwartzberg, C. D.  Grant, A.  Wolcott, C. E.  Talley, T. R.  Huser, R.  Bogomolni, J. Z.  Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B 108, 19191–19197 (2004). [CrossRef]
  9. L.  Polavarapu, Q. H.  Xu, “Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS,” Langmuir 24, 10608–10611 (2008). [CrossRef]
  10. M. C.  Daniel, D.  Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004). [CrossRef] [PubMed]
  11. B.  Yan, A.  Thubagere, W. R.  Premasiri, L. D.  Ziegler, L.  Dal Negro, B. M.  Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3, 1190–1202 (2009). [CrossRef] [PubMed]
  12. F. L.  Yap, P.  Thoniyot, S.  Krishnan, S.  Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6, 2056–2070 (2012). [CrossRef] [PubMed]
  13. I.  Blakey, Z.  Merican, K. J.  Thurecht, “A method for controlling the aggregation of gold nanoparticles: tuning of optical and spectroscopic properties,” Langmuir 29, 8266–8274 (2013). [CrossRef] [PubMed]
  14. T. A.  Laurence, G.  Braun, C.  Talley, A.  Schwartzberg, M.  Moskovits, N.  Reich, T.  Huser, “Rapid, solution-based characterization of optimized SERS nanoparticle substrates,” J. Am. Chem. Soc. 131, 162–169 (2009). [CrossRef]
  15. B.  Yan, S. V.  Boriskina, B. M.  Reinhard, “Optimizing gold nanoparticle cluster configurations (n ≤ 7) for array applications,” J. Phys. Chem. C. 115, 4578–4583 (2011). [CrossRef]
  16. M.  Quinten, U.  Kreibig, “Optical properties of aggregates of small metal particles,” Surf. Sci. 172, 557–577 (1986). [CrossRef]
  17. K.  Kelly, E.  Coronado, L. L.  Zhao, G. C.  Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  18. V.  Myroshnychenko, J.  Rodríguez-Fernández, I.  Pastoriza-Santos, A. M.  Funston, C.  Novo, P.  Mulvaney, L. M.  Liz-Marzán, F. J.  García De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008). [CrossRef] [PubMed]
  19. R.  Esteban, R. W.  Taylor, J. J.  Baumberg, J.  Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012). [CrossRef] [PubMed]
  20. L. S.  Slaughter, B. A.  Willingham, W. S.  Chang, M. H.  Chester, N.  Odgen, S.  Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012). [CrossRef] [PubMed]
  21. M.  Hentschel, M.  Schäferling, B.  Metzger, H.  Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13, 600–606 (2013). [CrossRef] [PubMed]
  22. Y.  Zhao, L.  Xu, L. M.  Liz-Marzán, “Alternating plasmonic nanoparticle heterochains made by polymerase chain reaction and their optical properties,” J. Phys. Chem. Lett. 4, 2230–2241 (2013). [CrossRef]
  23. M.  Grzelczak, J.  Pérez-Juste, P.  Mulvaney, L. M.  Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008). [CrossRef] [PubMed]
  24. P.  Alexandridis, “Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers,” Chem. Eng. Technol. 34, 15–28 (2011). [CrossRef]
  25. C.  Ciracì, R. T.  Hill, J. J.  Mock, Y.  Urzhumov, A. I.  Fernández-Domínguez, S. A.  Maier, J. B.  Pendry, A.  Chilkoti, D. R.  Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012). [CrossRef] [PubMed]
  26. H.  Okamoto, K.  Imura, T.  Shimada, M.  Kitajima, “Spatial distribution of enhanced optical fields in monolayered assemblies of metal nanoparticles: Effects of interparticle coupling,” J. Photochem. Photobiol. A Chem. 221, 154–159 (2011). [CrossRef]
  27. S.  Lin, M.  Li, E.  Dujardin, C.  Girard, S.  Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005). [CrossRef]
  28. K.  Imura, H.  Okamoto, M. K.  Hossain, M.  Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett. 6, 2173–2176 (2006). [CrossRef] [PubMed]
  29. W.  Chen, A.  Kimel, A.  Kirilyuk, T.  Rasing, “Apertureless SNOM study on gold nanoparticles: Experiments and simulations,” Phys. Status Solidi B 247, 2047–2050 (2010). [CrossRef]
  30. T.  Shimada, K.  Imura, H.  Okamoto, M.  Kitajima, “Spatial distribution of enhanced optical fields in one-dimensional linear arrays of gold nanoparticles studied by scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 15, 4265–4269 (2013). [CrossRef]
  31. M.  Bosman, V. J.  Keast, M.  Watanabe, A. I.  Maaroof, M. B.  Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18, 165505 (2007). [CrossRef]
  32. A. L.  Koh, K.  Bao, I.  Khan, W. E.  Smith, G.  Kothleitner, P.  Nordlander, S. A.  Maier, D. W.  Mccomb, “Electron energy-loss spectroscopy (EELS) of silver nanoparticles and dimers : Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009). [CrossRef] [PubMed]
  33. AuNPs were obtained from British Biocell International Ltd. Cucurbit[7]uril was kindly provided by Dr. O. A. Scherman, Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
  34. A.  Mayoral, C.  Magen, M.  Jose-Yacaman, “Nanoscale mapping of plasmon resonances of functional multi-branched gold nanoparticles,” Chem. Commun. 48, 8667–8669 (2012). [CrossRef]
  35. S.  Bruzzone, M.  Malvaldi, G. P.  Arrighini, C.  Guidotti, “Theoretical study of electromagnetic scattering by metal nanoparticles,” J. Phys. Chem. B 109, 3807–3812 (2005). [CrossRef]
  36. M. L.  Roldán, S.  Sanchez-Cortes, J. V.  García-Ramos, C.  Domingo, “Cucurbit[8]uril-stabilized charge transfer complexes with diquat driven by pH: a SERS study,” Phys. Chem. Chem. Phys. 14, 4935–4941 (2012). [CrossRef]
  37. N. Hüsken, Institut des Sciences Moléculaires UMR 5255, Université de Bordeaux 1, 16 Avenue Pey Berland, 33607 Pessac, France, and R. W. Taylor, J. C. Taveau, O. Lambert, O. A. Scherman, J. J. Baumberg, and A. Kuhn are preparing a manuscript to be called “Electrokinetic assembly of one-dimensional nanoparticle chains with cucurbit[7]uril controlled sub-nanometer junctions.”
  38. H.  Okamoto, K.  Imura, “Visualizing the optical field structures in metal nanostructures,” J. Phys. Chem. Lett. 4, 2230–2241 (2013). [CrossRef]
  39. G.  Colas des Francs, C.  Girard, J.  Weeber, C.  Chicanne, T.  David, A.  Dereux, D.  Peyrade, “Optical analogy to electronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001). [CrossRef] [PubMed]
  40. C.  Chicanne, T.  David, R.  Quidant, J.  Weeber, Y.  Lacroute, E.  Bourillot, A.  Dereux, G.  Colas des Francs, C.  Girard, “Imaging the local density of states of optical corrals,” Phys. Rev. Lett. 88, 097402 (2002). [CrossRef] [PubMed]
  41. E. H.  Linfoot, E.  Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66, 145–149 (1953). [CrossRef]
  42. S. T.  McCain, R. M.  Willett, D. J.  Brady, “Multi-excitation Raman spectroscopy technique for fluorescence rejection,” Opt. Express 16, 10975–10991 (2008). [CrossRef] [PubMed]
  43. A.  Wei, B.  Kim, B.  Sadtler, S. L.  Tripp, “Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays,” ChemPhysChem 2, 743–745 (2001). [CrossRef] [PubMed]
  44. K. D.  Alexander, K.  Skinner, S.  Zhang, H.  Wei, R.  Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate.” Nano Lett. 10, 4488–4493 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited