OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32400–32410

Adaptive system correction for robust Fourier ptychographic imaging

Zichao Bian, Siyuan Dong, and Guoan Zheng  »View Author Affiliations

Optics Express, Vol. 21, Issue 26, pp. 32400-32410 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3322 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fourier ptychography (FP) is a recently developed imaging approach that bypasses the resolution limit defined by the lens’ aperture. In current FP imaging platforms, systematic noise sources come from the intensity fluctuation of multiple LED elements and the pupil aberrations of the employed optics. These system uncertainties can significantly degrade the reconstruction quality and limit the achievable resolution, imposing a restriction on the effectiveness of the FP approach. In this paper, we report an optimization procedure that performs adaptive system correction for Fourier ptychographic imaging. Similar to the techniques used in phase retrieval, the reported procedure involves the evaluation of an image-quality metric at each iteration step, followed by the estimation of an improved system correction. This optimization process is repeated until the image-quality metric is maximized. As a demonstration, we used this process to correct for illumination intensity fluctuation, to compensate for pupil aberration of the optics, and to recover several unknown system parameters. The reported adaptive correction scheme may improve the robustness of Fourier ptychographic imaging by factoring out system imperfections and uncertainties.

© 2013 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(100.0100) Image processing : Image processing
(100.5070) Image processing : Phase retrieval
(170.0180) Medical optics and biotechnology : Microscopy
(170.3010) Medical optics and biotechnology : Image reconstruction techniques

ToC Category:
Image Processing

Original Manuscript: October 14, 2013
Revised Manuscript: December 4, 2013
Manuscript Accepted: December 12, 2013
Published: December 20, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Zichao Bian, Siyuan Dong, and Guoan Zheng, "Adaptive system correction for robust Fourier ptychographic imaging," Opt. Express 21, 32400-32410 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics7(9), 739–745 (2013). [CrossRef]
  2. X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett.38(22), 4845–4848 (2013). [CrossRef] [PubMed]
  3. C. J. Schwarz, Y. Kuznetsova, and S. R. Brueck, “Imaging interferometric microscopy,” Opt. Lett.28(16), 1424–1426 (2003). [CrossRef] [PubMed]
  4. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett.97(16), 168102 (2006). [CrossRef] [PubMed]
  5. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A23(12), 3162–3170 (2006). [CrossRef] [PubMed]
  6. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt.47(30), 5654–5659 (2008). [CrossRef] [PubMed]
  7. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt.49(5), 845–857 (2010). [CrossRef] [PubMed]
  8. T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue,” Opt. Lett.35(8), 1136–1138 (2010). [CrossRef] [PubMed]
  9. A. E. Tippie, A. Kumar, and J. R. Fienup, “High-resolution synthetic-aperture digital holography with digital phase and pupil correction,” Opt. Express19(13), 12027–12038 (2011). [CrossRef] [PubMed]
  10. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng.21, 215829 (1982).
  11. J. R. Fienup, “Phase-retrieval algorithms for a complicated optical system,” Appl. Opt.32(10), 1737–1746 (1993). [CrossRef] [PubMed]
  12. L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun.199(1–4), 65–75 (2001). [CrossRef]
  13. B. H. Dean and C. W. Bowers, “Diversity selection for phase-diverse phase retrieval,” J. Opt. Soc. Am. A20(8), 1490–1504 (2003). [CrossRef] [PubMed]
  14. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm,” Phys. Rev. Lett.93(2), 023903 (2004). [CrossRef] [PubMed]
  15. P. Bao, F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval using multiple illumination wavelengths,” Opt. Lett.33(4), 309–311 (2008). [CrossRef] [PubMed]
  16. M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express16(10), 7264–7278 (2008). [CrossRef] [PubMed]
  17. J. Rodenburg, “Ptychography and related diffractive imaging methods,” Adv. Imaging Electron Phys.150, 87–184 (2008). [CrossRef]
  18. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science321(5887), 379–382 (2008). [CrossRef] [PubMed]
  19. A. M. Maiden, J. M. Rodenburg, and M. J. Humphry, “Optical ptychography: a practical implementation with useful resolution,” Opt. Lett.35(15), 2585–2587 (2010). [CrossRef] [PubMed]
  20. M. J. Humphry, B. Kraus, A. C. Hurst, A. M. Maiden, and J. M. Rodenburg, “Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging,” Nat. Commun.3, 730 (2012). [CrossRef] [PubMed]
  21. W. Hoppe and G. Strube, “Diffraction in inhomogeneous primary wave fields. 2. Optical experiments for phase determination of lattice interferences,” Acta Crystallogr. A25, 502–507 (1969). [CrossRef]
  22. P. Nellist, B. McCallum, and J. Rodenburg, “Resolution beyond the'information limit'in transmission electron microscopy,” Nature374, 630–632 (1995).
  23. A. M. Maiden, M. J. Humphry, M. C. Sarahan, B. Kraus, and J. M. Rodenburg, “An annealing algorithm to correct positioning errors in ptychography,” Ultramicroscopy120, 64–72 (2012). [CrossRef] [PubMed]
  24. A. Shenfield and J. M. Rodenburg, “Evolutionary determination of experimental parameters for ptychographical imaging,” J. Appl. Phys.109(12), 124510 (2011). [CrossRef]
  25. M. Beckers, T. Senkbeil, T. Gorniak, K. Giewekemeyer, T. Salditt, and A. Rosenhahn, “Drift correction in ptychographic diffractive imaging,” Ultramicroscopy126, 44–47 (2013). [CrossRef] [PubMed]
  26. F. Zhang, I. Peterson, J. Vila-Comamala, A. Diaz, F. Berenguer, R. Bean, B. Chen, A. Menzel, I. K. Robinson, and J. M. Rodenburg, “Translation position determination in ptychographic coherent diffraction imaging,” Opt. Express21(11), 13592–13606 (2013). [CrossRef] [PubMed]
  27. G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express21(13), 15131–15143 (2013). [CrossRef] [PubMed]
  28. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A20(4), 609–620 (2003). [CrossRef] [PubMed]
  29. S. T. Thurman and J. R. Fienup, “Phase retrieval with signal bias,” J. Opt. Soc. Am. A26(4), 1008–1014 (2009). [CrossRef] [PubMed]
  30. P. Thibault and M. Guizar-Sicairos, “Maximum-likelihood refinement for coherent diffractive imaging,” New J. Phys.14(6), 063004 (2012). [CrossRef]
  31. C. Audet and J. E. Dennis., “Analysis of generalized pattern searches,” SIAM J. Optim.13(3), 889–903 (2002). [CrossRef]
  32. S. Zheng, H. Lin, J.-Q. Liu, M. Balic, R. Datar, R. J. Cote, and Y.-C. Tai, “Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells,” J. Chromatogr. A1162(2), 154–161 (2007). [CrossRef] [PubMed]
  33. V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A20(1), 40–55 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited