OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32450–32467

Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range

Ben Aernouts, Eduardo Zamora-Rojas, Robbe Van Beers, Rodrigo Watté, Ling Wang, Mizuki Tsuta, Jeroen Lammertyn, and Wouter Saeys  »View Author Affiliations


Optics Express, Vol. 21, Issue 26, pp. 32450-32467 (2013)
http://dx.doi.org/10.1364/OE.21.032450


View Full Text Article

Enhanced HTML    Acrobat PDF (1767 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A supercontinuum laser based double integrating sphere setup in combination with an unscattered transmittance measurement setup was developed and carefully validated for optical characterization of turbid samples in the 500-2250 nm wavelength range. A set of 57 liquid optical phantoms, covering a wide range of absorption and scattering properties, were prepared and measured at two sample thicknesses. The estimated bulk optical properties matched well for both thicknesses, and with theory and literature, without significant crosstalk between absorption and scattering. Equations were derived for the bulk scattering properties μs, μs’ and g of Intralipid® 20% which can be used to calculate the bulk scattering properties of intralipid-dilutions in the 500-2250 nm range.

© 2013 Optical Society of America

OCIS Codes
(120.3150) Instrumentation, measurement, and metrology : Integrating spheres
(290.5820) Scattering : Scattering measurements
(290.5850) Scattering : Scattering, particles
(290.7050) Scattering : Turbid media
(300.1030) Spectroscopy : Absorption
(220.2945) Optical design and fabrication : Illumination design
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: November 29, 2013
Manuscript Accepted: December 9, 2013
Published: December 20, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Ben Aernouts, Eduardo Zamora-Rojas, Robbe Van Beers, Rodrigo Watté, Ling Wang, Mizuki Tsuta, Jeroen Lammertyn, and Wouter Saeys, "Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range," Opt. Express 21, 32450-32467 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-26-32450


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005). [CrossRef]
  2. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007), p. 840.
  3. Y.-C. Chen and S. N. Thennadil, “Insights into information contained in multiplicative scatter correction parameters and the potential for estimating particle size from these parameters,” Anal. Chim. Acta746, 37–46 (2012). [CrossRef] [PubMed]
  4. W. Saeys, M. A. Velazco-Roa, S. N. Thennadil, H. Ramon, and B. M. Nicolaï, “Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm,” Appl. Opt.47(7), 908–919 (2008). [CrossRef] [PubMed]
  5. E. Zamora-Rojas, Department of Animal Production, University of Córdoba, Córdoba 14014, Spain, A. Garrido-Varo, B. Aernouts, D. Pérez-Marín, W. Saeys, Y. Yamada, and J. E. Guerrero-Ginel, are preparing a manuscript to be called “Characterization of diffuse reflectance near-infrared spectroscopy for non-invasive pig skin measurements.”
  6. P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express2(8), 2265–2278 (2011). [CrossRef] [PubMed]
  7. E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol.19, 218–226 (2013). [CrossRef]
  8. E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, W. Saeys, D. Pérez-Marín, and J. E. Guerrero-Ginel, “Optical properties of pig skin epidermis and dermis estimated with double integrating spheres measurements,” Innov. Food Sci. Emerg. Technol., (to be published) (2013).
  9. S. A. Prahl, “Everything I think you should know about Inverse Adding-Doubling,” http://omlc.ogi.edu/software/iad/iad-3-9-10.zip .
  10. S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt.32(4), 559–568 (1993). [CrossRef] [PubMed]
  11. S. Leyre, G. Durinck, B. Van Giel, W. Saeys, J. Hofkens, G. Deconinck, and P. Hanselaer, “Extended adding-doubling method for fluorescent applications,” Opt. Express20(16), 17856–17872 (2012). [CrossRef] [PubMed]
  12. S. N. Thennadil, H. Martens, and A. Kohler, “Physics-based multiplicative scatter correction approaches for improving the performance of calibration models,” Appl. Spectrosc.60(3), 315–321 (2006). [CrossRef] [PubMed]
  13. J. W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J. F. Beek, and M. J. van Gemert, “Changes in the optical properties (at 632.8 nm) of slowly heated myocardium,” Appl. Opt.32(4), 367–371 (1993). [CrossRef] [PubMed]
  14. A. Bashkatov and E. Genina, “Optical properties of the subcutaneous adipose tissue in the spectral range 400–2500 nm,” Opt. Spectrosc.99(5), 836–874 (2005). [CrossRef]
  15. G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron.5(4), 944–947 (1999). [CrossRef]
  16. Labsphere, “Technical guid: integrating sphere theory and applications,” http://www.labsphere.com/uploads/technical-guides/a-guide-to-reflectance-materials-and-coatings.pdf .
  17. L. Wang, S. Sharma, B. Aernouts, H. Ramon, and W. Saeys, “Supercontinuum laser based double-integrating-sphere system for measuring optical properties of highly dense turbid media in the 1300-2350nm region with high,” Proc. SPIE 8427–3B, 1–6 (2012).
  18. J. Dudley and J. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010), p. 404.
  19. J. Pickering, C. Moes, H. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, “Two integrating spheres with an intervening scattering sample,” J. Opt. Soc. Am. A9(4), 621–631 (1992). [CrossRef]
  20. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt.32(4), 399–410 (1993). [CrossRef] [PubMed]
  21. Labsphere, “Technical guide: reference materials and coatings,” http://www.labsphere.com/uploads/technical-guides/a-guide-to-reflectance-materials-and-coatings.pdf .
  22. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt.42(19), 4023–4030 (2003). [CrossRef] [PubMed]
  23. L. Wang and S. L. Jacques, “Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission,” Phys. Med. Biol.39(12), 2349–2354 (1994). [CrossRef] [PubMed]
  24. H. J. van Staveren, J. F. Beek, J. W. Ramaekers, M. Keijzer, and W. M. Star, “Integrating sphere effect in whole bladder wall photodynamic therapy: I. 532 nm versus 630 nm optical irradiation,” Phys. Med. Biol.39(6), 947–959 (1994). [CrossRef] [PubMed]
  25. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16(8), 5907–5925 (2008). [CrossRef] [PubMed]
  26. B. Cletus, R. Künnemeyer, P. Martinsen, and V. A. McGlone, “Temperature-dependent optical properties of Intralipid measured with frequency-domain photon-migration spectroscopy,” J. Biomed. Opt.15(1), 017003 (2010). [CrossRef] [PubMed]
  27. P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011). [CrossRef] [PubMed]
  28. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992). [CrossRef] [PubMed]
  29. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  30. X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Controling the scattering of intralipid by using optical clearing agents,” Phys. Med. Biol.54(22), 6917–6930 (2009). [CrossRef] [PubMed]
  31. P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, and R. Oliver, “Thermal stability of intralipid optical phantoms,” Appl. Spectrosc.67(8), 993–996 (2013). [CrossRef] [PubMed]
  32. M. N. Usacheva, M. C. Teichert, and M. A. Biel, “The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria,” J. Photochem. Photobiol. B71(1-3), 87–98 (2003). [CrossRef] [PubMed]
  33. G. M. Hale and M. R. Querry, “Optical Constants of Water in the 200-nm to 200-microm Wavelength Region,” Appl. Opt.12(3), 555–563 (1973). [CrossRef] [PubMed]
  34. K. Bergmann and C. O’konski, “A spectroscopic study of methylene blue monomer, dimer, and complexes with montmorillonite,” J. Phys. Chem.67(10), 2169–2177 (1963). [CrossRef]
  35. A. Giusto, R. Saija, M. A. Iatì, P. Denti, F. Borghese, and O. I. Sindoni, “Optical properties of high-density dispersions of particles: application to intralipid solutions,” Appl. Opt.42(21), 4375–4380 (2003). [CrossRef] [PubMed]
  36. B. Aernouts, Department of Biosystems-MeBioS, KU Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium, R. Van Beers, R. Watté, J. Lammertyn, and W. Saeys, are preparing a manuscript to be called “Dependent scattering in intralipid phantoms in the 600-1850 nm range.”
  37. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt.6(2), 167–176 (2001). [CrossRef] [PubMed]
  38. T. Cattaneo, G. Cabassi, M. Profaizer, and R. Giangiacomo, “Contribution of light scattering to near infrared absorption in milk,” J. Near Infrared Spectrosc.17(1), 337 (2009). [CrossRef]
  39. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited