OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32468–32483

Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio

Paul Seidler, Kevin Lister, Ute Drechsler, Jens Hofrichter, and Thilo Stöferle  »View Author Affiliations

Optics Express, Vol. 21, Issue 26, pp. 32468-32483 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5359 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the design, fabrication, and characterization of a 1-dimensional silicon photonic crystal cavity with a quality factor-to-mode volume ratio greater than 107, which exceeds the highest previous values by an order of magnitude. The maximum of the electric field is outside the silicon in a void formed by a central slot. An extremely small calculated mode volume of 0.0096 (λvac/n)3 is achieved through the abrupt change of the electric field in the slot, despite which a high quality factor of 8.2 × 105 is predicted by simulation. Quality factors up to 1.4 × 105 are measured in actual devices. The observation of pronounced thermo-optic bistability is consistent with the strong confinement of light in these cavities.

© 2013 Optical Society of America

OCIS Codes
(130.3060) Integrated optics : Infrared
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(260.5740) Physical optics : Resonance
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Integrated Optics

Original Manuscript: October 9, 2013
Revised Manuscript: December 7, 2013
Manuscript Accepted: December 10, 2013
Published: December 20, 2013

Paul Seidler, Kevin Lister, Ute Drechsler, Jens Hofrichter, and Thilo Stöferle, "Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio," Opt. Express 21, 32468-32483 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  2. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009). [CrossRef]
  3. S. Noda, “Applied Physics. Seeking the Ultimate Nanolaser,” Science 314(5797), 260–261 (2006). [CrossRef] [PubMed]
  4. K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013). [CrossRef]
  5. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013). [CrossRef] [PubMed]
  6. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15(6), 3140–3148 (2007). [CrossRef] [PubMed]
  7. D. J. Ripin, K.-Y. Lim, G. S. Petrich, P. R. Villeneuve, S. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, L. A. Kolodziejski, “One-dimensional photonic bandgap microcavities for strong optical confinement in GaAs and GaAs/AlxOy semiconductor waveguides,” J. Lightwave Technol. 17(11), 2152–2160 (1999). [CrossRef]
  8. A. R. M. Zain, M. Gnan, H. M. H. Chong, M. Sorel, R. M. De La Rue, “Tapered Photonic Crystal Microcavities Embedded in Photonic Wire Waveguides With Large Resonance Quality-Factor and High Transmission,” IEEE Photon. Technol. Lett. 20(1), 6–8 (2008). [CrossRef]
  9. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009). [CrossRef]
  10. M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O’Faolain, G. Guizzetti, L. C. Andreani, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express 18(25), 26613–26624 (2010). [CrossRef] [PubMed]
  11. M. Lončar, A. Scherer, Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003). [CrossRef]
  12. S.-H. Kwon, T. Sünner, M. Kamp, A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16(16), 11709–11717 (2008). [CrossRef] [PubMed]
  13. A. Di Falco, L. O’Faolain, T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009). [CrossRef]
  14. T. J. Kippenberg, K. J. Vahala, “Cavity Opto-Mechanics,” Opt. Express 15(25), 17172–17205 (2007). [CrossRef] [PubMed]
  15. T. J. Kippenberg, K. J. Vahala, “Cavity Optomechanics: Back-Action at the Mesoscale,” Science 321(5893), 1172–1176 (2008). [CrossRef] [PubMed]
  16. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009). [CrossRef] [PubMed]
  17. M. Davanço, J. Chan, A. H. Safavi-Naeini, O. Painter, K. Srinivasan, “Slot-mode-coupled optomechanical crystals,” Opt. Express 20(22), 24394–24410 (2012). [CrossRef] [PubMed]
  18. A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013). [CrossRef] [PubMed]
  19. H. Mabuchi, A. C. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context,” Science 298(5597), 1372–1377 (2002). [CrossRef] [PubMed]
  20. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007). [CrossRef] [PubMed]
  21. J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, M. D. Lukin, “Coupling a Single Trapped Atom to a Nanoscale Optical Cavity,” Science 340(6137), 1202–1205 (2013). [CrossRef] [PubMed]
  22. V. R. Almeida, Q. Xu, C. A. Barrios, M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  23. C. A. Barrios, M. Lipson, “Electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13(25), 10092–10101 (2005). [CrossRef] [PubMed]
  24. J. T. Robinson, C. Manolatou, L. Chen, M. Lipson, “Ultrasmall Mode Volumes in Dielectric Optical Microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005). [CrossRef] [PubMed]
  25. A. Gondarenko, M. Lipson, “Low modal volume dipole-like dielectric slab resonator,” Opt. Express 16(22), 17689–17694 (2008). [CrossRef] [PubMed]
  26. P. Yu, B. Qi, X. Jiang, M. Wang, J. Yang, “Ultrasmall-V high-Q photonic crystal nanobeam microcavities based on slot and hollow-core waveguides,” Opt. Lett. 36(8), 1314–1316 (2011). [CrossRef] [PubMed]
  27. T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express 16(18), 13809–13817 (2008). [CrossRef] [PubMed]
  28. J. D. Ryckman, S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett. 101(7), 071104 (2012). [CrossRef]
  29. J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010). [CrossRef]
  30. J. Vučković, M. Lončar, H. Mabuchi, A. Scherer, “Optimization of the Q Factor in Photonic Crystal Microcavities,” IEEE J. Quantum Electron. 38(7), 850–856 (2002). [CrossRef]
  31. Y. Akahane, T. Asano, B.-S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  32. Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010). [CrossRef] [PubMed]
  33. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House, 2005).
  34. S. G. Johnson, J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001). [CrossRef] [PubMed]
  35. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010). [CrossRef]
  36. P. Lalanne, J. P. Hugonin, “Bloch-Wave Engineering for High-Q, Small-V Microcavities,” IEEE J. Quantum Electron. 39(11), 1430–1438 (2003). [CrossRef]
  37. C. Sauvan, G. Lecamp, P. Lalanne, J. P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express 13(1), 245–255 (2005). [CrossRef] [PubMed]
  38. R. Waldhäusl, B. Schnabel, E.-B. Kley, A. Bräuer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett. 33(7), 623–624 (1997). [CrossRef]
  39. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS Integrated Nano-Photonics Technology for 25 Gbps WDM Optical Communications Applications,” in Proceedings of 2012 IEEE International Electron Devices Meeting (IEDM) (Institute of Electrical and Electronics Engineers, 2012), pp. 809–811.
  40. T. Wahlbrink, T. Mollenhauer, Y. M. Georgiev, W. Henschel, J. K. Efavi, H. D. B. Gottlob, M. C. Lemme, H. Kurz, J. Niehusmann, P. Bolivar, “Highly selective etch process for silicon-on-insulator nano-devices,” Microelectron. Eng. 78-79, 212–217 (2005). [CrossRef]
  41. C. Welch, “Nanoscale Etching in Inductively Coupled Plasmas” (Oxford Instruments White Paper, 2011). http://www.isnc.cnsi.ucla.edu/pdf/Etching_Whitepaper.pdf
  42. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light (PrincetonUniversity Press, 2008), Chap. 10.
  43. Y. Xu, Y. Li, R. K. Lee, A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000). [CrossRef] [PubMed]
  44. V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, “Quality-Factor and Nonlinear Properties of Optical Whsipering-Gallery Modes,” Phys. Lett. A 137(7-8), 393–397 (1989). [CrossRef]
  45. V. S. Il’chenko, M. L. Gorodetskii, “Thermal Nonlinear Effects in Optical Whispering Gallery Microresonators,” Laser Phys. 2, 1004–1009 (1992).
  46. T. Carmon, L. Yang, K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004). [CrossRef] [PubMed]
  47. H. Rokhsari, S. M. Spillane, K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85(15), 3029–3031 (2004). [CrossRef]
  48. P. E. Barclay, K. Srinivasan, O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005). [CrossRef] [PubMed]
  49. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005). [CrossRef] [PubMed]
  50. T. Uesugi, B.-S. Song, T. Asano, S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006). [CrossRef] [PubMed]
  51. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light (PrincetonUniversity Press, 2008), Chap. 2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited