OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32491–32500

Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas

Zeyu Pan and Junpeng Guo  »View Author Affiliations

Optics Express, Vol. 21, Issue 26, pp. 32491-32500 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2049 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Resonance behaviors of the fundamental resonance mode of diabolo metal bar optical antennas are investigated by using finite-difference time-domain (FDTD) numerical simulations and a dipole oscillator model. It is found that as the waist of the diabolo metal bar optical antenna is reduced, optical energy absorption cross section and near field enhancement at resonance increase significantly. Also reduction of the diabolo waist width causes red-shift of the resonant wavelengths in the spectra of absorption cross-section, scattering cross-section, and the near electric field. A dipole oscillator model including the self-inductance force is used to fit the FDTD numerical simulation results. The dipole oscillator model characterizes well the resonance behaviors of narrow waist diabolo metal bar optical antennas.

© 2013 Optical Society of America

OCIS Codes
(230.4910) Optical devices : Oscillators
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: July 1, 2013
Revised Manuscript: November 13, 2013
Manuscript Accepted: December 14, 2013
Published: December 23, 2013

Zeyu Pan and Junpeng Guo, "Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas," Opt. Express 21, 32491-32500 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011). [CrossRef]
  2. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1(3), 438–483 (2009). [CrossRef]
  3. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev.111(6), 3888–3912 (2011). [CrossRef] [PubMed]
  4. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: a Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B76(24), 245403 (2007). [CrossRef]
  5. P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology18(4), 044017 (2007). [CrossRef]
  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  7. L. Billot, M. Lamy de la Chapelle, A. S. Grimault, A. Vial, D. Barchiesi, J. L. Bijeon, P. M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422(4-6), 303–307 (2006). [CrossRef]
  8. A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, and M. L. de la Chapelle, “Surface enhanced infrared spectroscopy using gold nanoantennas,” Phys. Stat. Solidi B247(8), 2071–2074 (2010). [CrossRef]
  9. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  10. K. Ueno and H. Misawa, “Photochemical reaction fields with strong coupling between a photon and a molecule,” J. Photochem. Photobiol. Chem.221(2-3), 130–137 (2011). [CrossRef]
  11. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  12. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008). [CrossRef] [PubMed]
  13. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett.6(3), 355–360 (2006). [CrossRef] [PubMed]
  14. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett.6(3), 361–364 (2006). [CrossRef] [PubMed]
  15. E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B84(1-2), 3–9 (2006). [CrossRef]
  16. Z. Rao, L. Hesselink, and J. S. Harris, “High-intensity bowtie-shaped nano-aperture vertical-cavity surface-emitting laser for near-field optics,” Opt. Lett.32(14), 1995–1997 (2007). [CrossRef] [PubMed]
  17. I. A. Ibrahim, M. Mivelle, T. Grosjean, J. T. Allegre, G. W. Burr, and F. I. Baida, “Bowtie-shaped nanoaperture: a modal study,” Opt. Lett.35(14), 2448–2450 (2010). [CrossRef] [PubMed]
  18. S.-Y. Huang, H.-H. Hsiao, Y.-T. Chang, H.-H. Chen, Y.-W. Jiang, H.-F. Huang, P.-E. Chang, H.-C. Chang, and S.-C. Lee, “Extraordinary transmission through a silver film perforated with bowtie-shaped aperture array in midinfrared region,” Appl. Phys. Lett.98(25), 253107 (2011). [CrossRef]
  19. W. Zhong, Y. Wang, R. He, and X. Zhou, “Investigation of plasmonics resonance infrared bowtie metal antenna,” Appl. Phys. B105(2), 231–237 (2011). [CrossRef]
  20. M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett.10(9), 3524–3528 (2010). [CrossRef] [PubMed]
  21. E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett.88(15), 153110 (2006). [CrossRef]
  22. W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface plasmon resonances in silver bowtie nanoantennas with varied bow angles,” J. Appl. Phys.108(12), 124314 (2010). [CrossRef]
  23. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16(12), 9144–9154 (2008). [CrossRef] [PubMed]
  24. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004). [CrossRef]
  25. W. Ding, R. Bachelot, R. Espiau de Lamaestre, D. Macias, A. L. Baudrion, and P. Royer, “Understanding near/far-field engineering of optical dimer antennas through geometry modification,” Opt. Express17(23), 21228–21239 (2009). [CrossRef] [PubMed]
  26. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B72(16), 165409 (2005). [CrossRef]
  27. E. Cubukcu, E. J. Nanfang Yu, L. Smythe, K. B. Diehl, Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron.14(6), 1448–1461 (2008). [CrossRef]
  28. S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater.23(38), 4422–4430 (2011). [CrossRef] [PubMed]
  29. S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys.99(12), 123504 (2006). [CrossRef]
  30. A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B109(27), 13138–13142 (2005). [CrossRef] [PubMed]
  31. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402 (2002). [CrossRef] [PubMed]
  32. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103(40), 8410–8426 (1999). [CrossRef]
  33. E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry–Perot resonators for surface plasmons,” Appl. Phys. Lett.95(20), 201101 (2009). [CrossRef]
  34. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett.26(14), 1096–1098 (2001). [CrossRef] [PubMed]
  35. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004). [CrossRef]
  36. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003). [CrossRef]
  37. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003). [CrossRef]
  38. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express14(21), 9988–9999 (2006). [CrossRef] [PubMed]
  39. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A.106(46), 19227–19232 (2009). [CrossRef] [PubMed]
  40. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express15(26), 17736–17746 (2007). [CrossRef] [PubMed]
  41. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011). [CrossRef] [PubMed]
  42. D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express19(16), 15047–15061 (2011). [CrossRef] [PubMed]
  43. R. Adato, A. A. Yanik, C.-H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express18(5), 4526–4537 (2010). [CrossRef] [PubMed]
  44. V. Liberman, R. Adato, T. H. Jeys, B. G. Saar, S. Erramilli, and H. Altug, “Rational design and optimization of plasmonic nanoarrays for surface enhanced infrared spectroscopy,” Opt. Express20(11), 11953–11967 (2012). [CrossRef] [PubMed]
  45. V. Liberman, R. Adato, A. Mertiri, A. A. Yanik, K. Chen, T. H. Jeys, S. Erramilli, and H. Altug, “Angle-and polarization-dependent collective excitation of plasmonic nanoarrays for surface enhanced infrared spectroscopy,” Opt. Express19(12), 11202–11212 (2011). [CrossRef] [PubMed]
  46. S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett.10(7), 2511–2518 (2010). [CrossRef] [PubMed]
  47. B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky, “Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays,” Opt. Express20(25), 27725–27739 (2012). [CrossRef] [PubMed]
  48. N. Zhou, E. C. Kinzel, and X. Xu, “Complementary bowtie aperture for localizing and enhancing optical magnetic field,” Opt. Lett.36(15), 2764–2766 (2011). [CrossRef] [PubMed]
  49. T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011). [CrossRef] [PubMed]
  50. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1997).
  51. M. A. Kats, N. Yu, P. Genevet, Z. Gaburro, and F. Capasso, “Effect of radiation damping on the spectral response of plasmonic components,” Opt. Express19(22), 21748–21753 (2011). [CrossRef] [PubMed]
  52. S. Bruzzone, M. Malvaldi, G. P. Arrighini, and C. Guidotti, “Light scattering by gold nanoparticles: Role of simple dielectric models,” J. Phys. Chem. B108(30), 10853–10858 (2004). [CrossRef]
  53. B. M. Ross and L. P. Lee, “Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett.34(7), 896–898 (2009). [CrossRef] [PubMed]
  54. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett.11(3), 1280–1283 (2011). [CrossRef] [PubMed]
  55. J. D. Jackson, Classical Electrodynamics 3th ed. (Wiley, 1998).
  56. E. B. Rosa, “The self and mutual inductances of linear conductors,” Bur. Stand. (U. S.), Bull.4(2), 301–344 (1908). [CrossRef]
  57. C. P. Huang, X. G. Yin, H. Huang, and Y. Y. Zhu, “Study of plasmon resonance in a gold nanorod with an LC circuit model,” Opt. Express17(8), 6407–6413 (2009). [CrossRef] [PubMed]
  58. K. Steinberg, M. Scheffler, and M. Dressel, “Microwave inductance of thin metal strips,” J. Appl. Phys.108(9), 96102–96103 (2010). [CrossRef]
  59. M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Photon. Nanostruct. Fund. Appl.10(1), 166–176 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited