OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32508–32515

Chaos-assisted tunneling in a deformed microcavity laser

Myung-Woon Kim, Sunghwan Rim, Chang-Hwan Yi, and Chil-Min Kim  »View Author Affiliations


Optics Express, Vol. 21, Issue 26, pp. 32508-32515 (2013)
http://dx.doi.org/10.1364/OE.21.032508


View Full Text Article

Enhanced HTML    Acrobat PDF (1949 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the impact of local dynamics on chaos-assisted tunneling in a highly deformed microcavity whose classical ray dynamics exhibits a small measure of trapezoidal-shaped orbit (TSO) stability islands in a main chaotic sea. These two classically completely decomposed regions in phase space can support resonance modes of their own respectively. Using numerical ray and wave analyses, we show that the emission characteristics of the TSO resonance mode are determined by local ray dynamics near TSO islands. The emission characteristics of the other high-Q resonance modes, on the other hand, are governed by usual ray-wave correspondence. We experimentally demonstrate that the TSO emission mode can be lased without selective excitations by devising a half-moon shaped highly deformed cavity. And we also show that the emission characteristics of the TSO lasing modes are well explained by numerical ray and wave analyses.

© 2013 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(240.7040) Optics at surfaces : Tunneling
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 8, 2013
Manuscript Accepted: November 27, 2013
Published: December 23, 2013

Citation
Myung-Woon Kim, Sunghwan Rim, Chang-Hwan Yi, and Chil-Min Kim, "Chaos-assisted tunneling in a deformed microcavity laser," Opt. Express 21, 32508-32515 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-26-32508


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Vahala, Optical Microcavities (World Scientific: New York, 1999).
  2. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific: New York, 1996).
  3. M. J. Davis and E. J. Heller, “Quantum dynamical tunneling in bound states,” J. Chem. Phys.75, 246–254 (1981). [CrossRef]
  4. O. Bohigas, S. Tomsovic, and D. Ullmo, “Manifestations of classical phase space structures in quantum mechanics,” Phys. Rep.223, 1–91 (1993).
  5. C. Dembowski, H.-D. Gräf, A. Heine, R. Hofferbert, H. Rehfeld, and A. Ritcher, “First Experimental Evidence for Chaos-Assisted Tunneling in a Microwave Annular Billiard” Phys. Rev. Lett.84, 867–870 (2000). [CrossRef] [PubMed]
  6. A. Bäcker, R. Ketzmerick, S. Löck, G. Vidmar, R. Höhmann, U. Kuhl, and H. J. Stöckmann, “Dynamical Tunneling in Mushroom Billiards,” Phys. Rev. Lett.100, 174103 (2008). [CrossRef] [PubMed]
  7. D. A. Stech, W. H. Oskay, and M. G. Raizen, “Observation of Chaos-Assisted Tunneling Between Islands of Stability,” Science293, 274–278 (2001). [CrossRef]
  8. W. K. Hensinger, H. Häffner, A. Browaeys, N. R. Heckenberg, C. Mckenzie, G. J. Milburn, W. D. Philips, S. L. Rolston, H. R. Dunlop, and B. Upcroft, “Dynamical tunneling of ultracold atoms,” Nature412, 52–55 (2001). [CrossRef] [PubMed]
  9. J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature385, 45–47 (1997). [CrossRef]
  10. V. A. Podolskiy and E. E. Narimanov, “Chaos-assisted tunneling in dielectric microcavities,” Opt. Lett.30, 474–476 (2005) [CrossRef] [PubMed]
  11. E. E. Narimanov and V. A. Podolskiy, “Chaos-assisted tunneling and dynamical localization in dielectric microdisk resonators,” IEEE J. Sel. Top. Quantum Electron.12, 40–51 (2006). [CrossRef]
  12. S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-Assisted Directional Light Emission from Microcavity Lasers,” Phys. Rev. Lett.104, 163902(2010). [CrossRef] [PubMed]
  13. S. Shinohara, T. Harayama, T. Fukushima, S. Sunada, and E. E. Narimanov, “Chaos-assisted emission from asymmetric resonant cavity microlasers,” Phys. Rev. A83, 053837 (2011). [CrossRef]
  14. A. D. Stone, “Nonlinear dynamics: Chaotic billiard lasers,” Nature465, 696–697 (2010) [CrossRef] [PubMed]
  15. M.-W. Kim, K.-W. Park, C.-H. Yi, and C.-M. Kim, “Directional and low-divergence emission in a rounded half-moon shaped microcavity,” Appl. Phys. Lett.98, 241110 (2011). [CrossRef]
  16. J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A5, 53–60 (2003). [CrossRef]
  17. S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and C.-M. Kim, “Ray and wave dynamical properties of a spiral-shaped dielectric microcavity,” J. Phys. A: Math. Theor.41, 275102 (2008). [CrossRef]
  18. J.-W. Ryu, S.-Y. Lee, C.-M. Kim, and Y.-J. Park, “Survival probability time distribution in dielectric cavities,” Phys. Rev. E73, 036207 (2006). [CrossRef]
  19. J. Wiersig and M. Hentschel, “Combining Directional Light Output and Ultralow Loss in Deformed Microdisks,” Phys. Rev. Lett.100, 033901 (2008). [CrossRef] [PubMed]
  20. S. Shinohara and T. Harayama, “Signature of ray chaos in quasibound wave functions for a stadium-shaped dielectric cavity,” Phys. Rev. E75, 036216 (2007). [CrossRef]
  21. C.-H. Yi, S.-H. Lee, M.-W. Kim, J. Cho, J. Lee, S.-Y. Lee, J. Wiersig, and C.-M. Kim, “Light emission of a scarlike mode with assistance of quasiperiodicity,” Phys. Rev. A84, 041803 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited