OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32516–32523

Frequency multiplying optoelectronic oscillator based on nonlinearly-coupled double loops

Wei Xu, Tao Jin, and Hao Chi  »View Author Affiliations


Optics Express, Vol. 21, Issue 26, pp. 32516-32523 (2013)
http://dx.doi.org/10.1364/OE.21.032516


View Full Text Article

Enhanced HTML    Acrobat PDF (1574 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate a frequency multiplying optoelectronic oscillator with nonlinearly-coupled double loops based on two cascaded Mach–Zehnder modulators, to generate high frequency microwave signals using only low-frequency devices. We find the final oscillation modes are only determined by the length of the master oscillation loop. Frequency multiplying signals are generated via nonlinearly-coupled double loops, the output of one loop being used to modulate the other. In the experiments, microwave signals at 10 GHz with −121 dBc/Hz phase noise at 10 kHz offset and 20 GHz with −112.8 dBc/Hz phase noise at 10 kHz offset are generated. Meanwhile, their side-mode suppression ratios are also evaluated and the maximum ratio of 70 dB is obtained.

© 2013 Optical Society of America

OCIS Codes
(230.4910) Optical devices : Oscillators
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Optoelectronics

History
Original Manuscript: August 13, 2013
Revised Manuscript: October 6, 2013
Manuscript Accepted: December 15, 2013
Published: December 23, 2013

Citation
Wei Xu, Tao Jin, and Hao Chi, "Frequency multiplying optoelectronic oscillator based on nonlinearly-coupled double loops," Opt. Express 21, 32516-32523 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-26-32516


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron.32(7), 1141–1149 (1996). [CrossRef]
  2. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” IEEE J. Opt. Soc.13(8), 1725–1734 (1996). [CrossRef]
  3. I. Ozdur, D. Mandridis, N. Hoghooghi, and P. J. Delfyett, “Low noise optically tunable opto-electronic oscillator with Fabry–Pérot Etalon,” J. Lightwave Technol.28(21), 3100–3106 (2010).
  4. S. L. Pan and J. P. Yao, “Multichannel optical signal processing in NRZ systems based on a frequency-doubling optoelectronic oscillator,” IEEE J. Sel. Top. Quantum Electron.16(5), 1460–1468 (2010). [CrossRef]
  5. L. Huo, Y. Dong, C. Lou, and Y. Gao, “Clock extraction using an opto-electronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett.15(7), 981–983 (2003). [CrossRef]
  6. Y. C. Chi, P. C. Peng, and G. R. Lin, “Clock-free RZ-BPSK data generation using self-starting optoelectronic oscillator,” J. Lightwave Technol.29(11), 1702–1707 (2011). [CrossRef]
  7. L. D. Nguyen, K. Nakatani, and B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett.22(12), 857–859 (2010). [CrossRef]
  8. P. S. Devgan, M. W. Pruessner, V. J. Urick, and K. J. Williams, “Detecting low-power RF signals using a multimode optoelectronic oscillator and integrated optical filter,” IEEE Photon. Technol. Lett.22(3), 152–154 (2010). [CrossRef]
  9. D. Chang, H. R. Fetterman, H. Erlig, H. Zhang, A. C. Oh, C. Zhang, and W. H. Steier, “39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator,” IEEE Photon. Technol. Lett.14(2), 191–193 (2002). [CrossRef]
  10. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optoelectronic oscillator using push-pull Mach–Zehnder modulator biased at point for optical two-tone signal generation,” in Conf. Lasers Electro-Optics (CLEO2005). (Tokyo, Japan., 2005), pp. 877–879.
  11. S. L. Pan and J. P. Yao, “A frequency-doubling optoelectronic oscillator using a polarization modulator,” IEEE Photon. Technol. Lett.21(13), 929–931 (2009). [CrossRef]
  12. W. Z. Li and J. P. Yao, “An optically tunable frequency-doubling optoelectronic oscillator incorporating a phase shifted fiber bragg grating based frequency-tunable photonic microwave filter,” Proc. MWP 2011, (Singapore, 2011) pp. 429–432. [CrossRef]
  13. L. X. Wang, N. H. Zhu, W. Li, and J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach-Zehnder modulator and a chirped fiber bragg grating,” IEEE Photon. Technol. Lett.23(22), 1688–1690 (2011). [CrossRef]
  14. D. Zhu, S. F. Liu, D. Ben, and S. Pan, “Frequency-Quadrupling optoelectronic oscillator for multichannel upconversion,” IEEE Photon. Technol. Lett.25(5), 426–429 (2013). [CrossRef]
  15. D. Zhu, S. L. Pan, and S. H. Cai, “High-Performance Photonic Microwave Downconverter Based on a Frequency-Doubling Optoelectronic Oscillator,” J. Lightwave Technol.30(18), 3036–3042 (2012). [CrossRef]
  16. M. Haji, L. P. Hou, A. E. Kelly, J. Akbar, J. H. Marsh, J. M. Arnold, and C. N. Ironside, “High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-locked laser diodes,” Opt. Express20(3), 3268–3274 (2012). [CrossRef] [PubMed]
  17. D. Eliyahu and L. Maleki, “Low phase noise and spurious level in multi-loop opto-electronic oscillators,” in proceeding of IEEE Conference on International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum(Tempa, Florida, U.S.A, 2003), pp. 405–410. [CrossRef]
  18. R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron.48(11), 1415–1423 (2012). [CrossRef]
  19. Hewlett-Packard, “Phase noise characterization of microwave oscillators—frequency discriminator method,” product note 11729C–2 (Hewlett-Packard, Santa Clara, Calif.).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited