OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32566–32571

Spectral properties and laser performance of Ho: Sc2SiO5 crystal at room temperature

Xiao-tao Yang, Bao-quan Yao, Yu Ding, Xuan Li, Gérard Aka, Li-he Zheng, and Jun Xu  »View Author Affiliations


Optics Express, Vol. 21, Issue 26, pp. 32566-32571 (2013)
http://dx.doi.org/10.1364/OE.21.032566


View Full Text Article

Enhanced HTML    Acrobat PDF (987 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Holmium doped scandium silicate (Ho:SSO) bulk crystal grown by Czochralski technique is reported. The absorption cross section of 4.8 × 10−21 cm2 at pumping wavelength 1940 nm and emission cross section of 5.56 × 10−21 cm2 at lasing wavelength 2112 nm were calculated, respectively. Lifetime was measured to be 1.51 ms at 300 K and 0.92 ms at 77 K. Continuous-wave laser was operated by using a diode-pumped Tm:YAP laser as pump source with central wavelength of 1940 nm. Output power of 385 mW at 2112 nm was primarily obtained.

© 2013 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 23, 2013
Revised Manuscript: December 1, 2013
Manuscript Accepted: December 4, 2013
Published: December 23, 2013

Citation
Xiao-tao Yang, Bao-quan Yao, Yu Ding, Xuan Li, Gérard Aka, Li-he Zheng, and Jun Xu, "Spectral properties and laser performance of Ho: Sc2SiO5 crystal at room temperature," Opt. Express 21, 32566-32571 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-26-32566


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. C. Gower, “Industrial applications of laser micromachining,” Opt. Express7(2), 56–67 (2000). [CrossRef] [PubMed]
  2. Z. X. Jiao, G. Y. He, J. Guo, and B. Wang, “High average power 2 μm generation using an intracavity PPMgLN optical parametric oscillator,” Opt. Lett.37(1), 64–66 (2012). [CrossRef] [PubMed]
  3. M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three- level lasers,” IEEE J. Quantum Electron.38(11), 1455–1464 (2002). [CrossRef]
  4. J. L. Yang, Y. L. Tang, and J. Q. Xu, “Development and applications of gain-switched fiber lasers,” Photonics Res.1(1), 52–57 (2013). [CrossRef]
  5. G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron.32(9), 1645–1656 (1996). [CrossRef]
  6. W. J. He, B. Q. Yao, Y. L. Ju, and Y. Z. Wang, “Diode-pumped efficient Tm,Ho:GdVO(4) laser with near-diffraction limited beam quality,” Opt. Express14(24), 11653–11659 (2006). [CrossRef] [PubMed]
  7. H. Hemmati, “207-µm cw diode-laser-pumped Tm, Ho:YLiF4 room-temperature laser,” Opt. Lett.14(9), 435–437 (1989). [CrossRef] [PubMed]
  8. R. C. Stoneman and L. Esterowitz, “Intracavity-pumped 209-µm Ho:YAG laser,” Opt. Lett.17(10), 736–738 (1992). [CrossRef] [PubMed]
  9. S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, E. K. Gorton, and J. A. C. Terry, “Intra-cavity side-pumped Ho:YAG laser,” Opt. Express14(22), 10481–10487 (2006). [CrossRef] [PubMed]
  10. J. Xu, L. H. Zheng, K. J. Yang, T. Dekorsy, Q. G. Wang, X. D. Xu, and L. B. Su, “Growth and efficient tunable laser operation of Tm:Sc2SiO5 crystal,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (OSA, 2012), paper IW3D.1.
  11. H. J. Strauss, W. Koen, C. Bollig, M. J. D. Esser, C. Jacobs, O. J. Collett, and D. R. Preussler, “Ho:YLF & Ho:LuLF slab amplifier system delivering 200 mJ, 2 µm single-frequency pulses,” Opt. Express19(15), 13974–13979 (2011). [CrossRef] [PubMed]
  12. C. Bollig, R. A. Hayward, W. A. Clarkson, and D. C. Hanna, “2-W Ho:YAG laser intracavity pumped by a diode-pumped Tm:YAG laser,” Opt. Lett.23(22), 1757–1759 (1998). [CrossRef] [PubMed]
  13. Y. J. Shen, B. Q. Yao, X. M. Duan, G. L. Zhu, W. Wang, Y. L. Ju, and Y. Z. Wang, “103 W in-band dual-end-pumped Ho:YAG laser,” Opt. Lett.37(17), 3558–3560 (2012). [CrossRef] [PubMed]
  14. M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B94(2), 195–198 (2009). [CrossRef]
  15. B. Q. Yao, L. L. Zheng, X. T. Yang, T. H. Wang, X. M. Duan, G. J. Zhao, and Q. Dong, “Judd-Oflet analysis of spectrum and laser performance of Ho:YAP crystal end-pumped by 1.91μm Tm:YLF laser,” Chin. Phys. B18(3), 1009–1013 (2009). [CrossRef]
  16. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic Energy Levels in the Trivalent Lanthanide Aquo lons, I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” Chem. Phys.49(10), 4424–4444 (1968). [CrossRef]
  17. S. Gołąb, P. Solarz, G. Dominiak-Dzik, T. Łukasiewicz, M. Świrkowicz, and W. Ryba-Romanowski, “Spectroscopy of YVO4:Ho3+ crystals,” Appl. Phys. B74(3), 237–241 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited