OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32611–32622

Retrieving marine inherent optical properties from satellites using temperature and salinity-dependent backscattering by seawater

P. Jeremy Werdell, Bryan A. Franz, Jason T. Lefler, Wayne D. Robinson, and Emmanuel Boss  »View Author Affiliations


Optics Express, Vol. 21, Issue 26, pp. 32611-32622 (2013)
http://dx.doi.org/10.1364/OE.21.032611


View Full Text Article

Enhanced HTML    Acrobat PDF (2935 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Time-series of marine inherent optical properties (IOPs) from ocean color satellite instruments provide valuable data records for studying long-term time changes in ocean ecosystems. Semi-analytical algorithms (SAAs) provide a common method for estimating IOPs from radiometric measurements of the marine light field. Most SAAs assign constant spectral values for seawater absorption and backscattering, assume spectral shape functions of the remaining constituent absorption and scattering components (e.g., phytoplankton, non-algal particles, and colored dissolved organic matter), and retrieve the magnitudes of each remaining constituent required to match the spectral distribution of measured radiances. Here, we explore the use of temperature- and salinity-dependent values for seawater backscattering in lieu of the constant spectrum currently employed by most SAAs. Our results suggest that use of temperature- and salinity-dependent seawater spectra elevate the SAA-derived particle backscattering, reduce the non-algal particles plus colored dissolved organic matter absorption, and leave the derived absorption by phytoplankton unchanged.

© 2013 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.4458) Atmospheric and oceanic optics : Oceanic scattering
(280.4991) Remote sensing and sensors : Passive remote sensing
(280.1350) Remote sensing and sensors : Backscattering

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: November 8, 2013
Revised Manuscript: December 13, 2013
Manuscript Accepted: December 16, 2013
Published: December 23, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Citation
P. Jeremy Werdell, Bryan A. Franz, Jason T. Lefler, Wayne D. Robinson, and Emmanuel Boss, "Retrieving marine inherent optical properties from satellites using temperature and salinity-dependent backscattering by seawater," Opt. Express 21, 32611-32622 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-26-32611


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci.1(1), 19–42 (2009). [CrossRef] [PubMed]
  2. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt.33(3), 443–452 (1994). [CrossRef] [PubMed]
  3. P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z.-P. Lee, H. Loisel, S. Maritorena, F. Mélin, T. S. Moore, T. J. Smyth, D. Antoine, E. Devred, O. H. F. d’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt.52(10), 2019–2037 (2013). [CrossRef] [PubMed]
  4. IOCCG, “Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications,” Reports of the International Ocean-Colour Coordinating Group No. 5, Z-P. Lee, ed. (IOCCG, Dartmouth, 2006).
  5. M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles19(1), GB1006 (2005), doi:. [CrossRef]
  6. D. A. Siegel, S. Maritorena, and N. Nelson, “Interdependence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption,” J. Geophys. Res.110(C7), C07011 (2005), doi:. [CrossRef]
  7. H. Loisel, J-M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global oceans,” J. Geophys. Res. 111, C09024, doi:1029/2005JC003367 (2006).
  8. D. A. Siegel, M. J. Behrenfeld, S. Maritorena, C. R. McClain, D. Antoine, S. W. Bailey, P. S. Bontempi, E. S. Boss, H. M. Dierssen, S. C. Doney, R. E. Eplee, R. H. Evans, G. C. Feldman, E. Fields, B. A. Franz, N. A. Kuring, C. Mengelt, N. B. Nelson, F. S. Patt, W. D. Robinson, J. L. Sarmiento, C. M. Swan, P. J. Werdell, T. K. Westberry, J. G. Wilding, and J. A. Yoder, “Regional to global assessment of phytoplankton dynamics from the SeaWiFS mission,” Remote Sens. Environ.135, 77–91 (2013). [CrossRef]
  9. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt.20(2), 177–184 (1981). [CrossRef] [PubMed]
  10. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt.36(33), 8710–8723 (1997). [CrossRef] [PubMed]
  11. A. Morel, “Note au sujet des constantes de diffusion de la lumiere pour l’eau et l’eau de mer optiquement pures,” Cah. Oceanogr.20, 157–162 (1968).
  12. A. Morel, “Optical properties of pure water and pure seawater,” Optical Aspects of Oceanography, N.G. Jerlov and E. Steenman Nielsen, eds. (Acad. Press, London and New York, 1974).
  13. H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE2258, 174–183 (1994). [CrossRef]
  14. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt.45(21), 5294–5309 (2006). [CrossRef] [PubMed]
  15. M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosci.4(6), 1041–1058 (2007). [CrossRef]
  16. X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: effect of salinity,” Opt. Express17(7), 5698–5710 (2009). [CrossRef] [PubMed]
  17. J. I. Antonov, D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, “World Ocean Atlas 2009, Volume 2: Salinity,” NOAA Atlas NESDIS 69, S. Levitus, ed., (NOAA, Silver Spring, 2010).
  18. R. W. Reynolds, N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, “An improved in situ and satellite SST analysis for climate,” J. Clim.15(13), 1609–1625 (2002). [CrossRef]
  19. Z.-P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt.41(27), 5755–5772 (2002). [CrossRef] [PubMed]
  20. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10924 (1988). [CrossRef]
  21. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations in light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implication for bio-optical models,” J. Geophys. Res.103(C13), 31033–31044 (1998). [CrossRef]
  22. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.103(C11), 24937–24953 (1998). [CrossRef]
  23. P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ.98(1), 122–140 (2005). [CrossRef]
  24. Z.-P. Lee, K. L. Carder, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Method to derive ocean absorption coefficients from remote-sensing reflectance,” Appl. Opt.35(3), 453–462 (1996). [CrossRef] [PubMed]
  25. S. A. Henson, J. P. Dunne, and J. L. Sarmiento, “Decadal variability in North Atlantic phytoplankton blooms,” J. Geophys. Res.114(C4), C04013 (2009), doi:. [CrossRef]
  26. C. R. McClain, S. R. Signorini, and J. R. Christiansen, “Subtropical gyre variability observed by ocean-color satellites,” Deep Sea Res. Part II Top. Stud. Oceanogr.51(1-3), 281–301 (2004). [CrossRef]
  27. Z.P. Lee, S. Shang, C. Hu, M. Lewis, R. Arnone, Y. Li, and B. Lubac, “Time series of bio-optical properties in a subtropical gyre: Implications for the evaluation of interannual trends of biogeochemical properties,” J. Geophys. Res.115, C09012, doi:1029/2009JC005865 (2010).
  28. M. Szeto, P. J. Werdell, T. S. Moore, and J. W. Campbell, “Are the world’s oceans opticall different?” J. Geophys. Res.116, C00H04 (2011), doi:. [CrossRef]
  29. T. K. Westberry, E. Boss, and Z.-P. Lee, “Influence of Raman scattering on ocean color inversion models,” Appl. Opt.52(22), 5552–5561 (2013). [CrossRef] [PubMed]
  30. S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express18(7), 7521–7527 (2010). [CrossRef] [PubMed]
  31. C. Goyens, C. Jamet, and K. G. Ruddick, “Spectral relationships for atmospheric correction. I. Validation of red and near infra-red marine reflectance relationships,” Opt. Express21(18), 21162–21175 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited