OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32623–32629

Photonic crystal cavities in cubic (3C) polytype silicon carbide films

Marina Radulaski, Thomas M. Babinec, Sonia Buckley, Armand Rundquist, J Provine, Kassem Alassaad, Gabriel Ferro, and Jelena Vučković  »View Author Affiliations


Optics Express, Vol. 21, Issue 26, pp. 32623-32629 (2013)
http://dx.doi.org/10.1364/OE.21.032623


View Full Text Article

Enhanced HTML    Acrobat PDF (1631 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design, fabrication, and characterization of high quality factor (Q ~103) and small mode volume (V ~0.75 (λ/n)3) planar photonic crystal cavities from cubic (3C) thin films (thickness ~200 nm) of silicon carbide (SiC) grown epitaxially on a silicon substrate. We demonstrate cavity resonances across the telecommunications band, with wavelengths from 1.25 – 1.6 μm. Finally, we discuss possible applications in nonlinear optics, optical interconnects, and quantum information science.

© 2013 Optical Society of America

OCIS Codes
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: November 29, 2013
Manuscript Accepted: December 9, 2013
Published: December 23, 2013

Citation
Marina Radulaski, Thomas M. Babinec, Sonia Buckley, Armand Rundquist, J Provine, Kassem Alassaad, Gabriel Ferro, and Jelena Vučković, "Photonic crystal cavities in cubic (3C) polytype silicon carbide films," Opt. Express 21, 32623-32629 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-26-32623


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys.74(7), 076501 (2011). [CrossRef]
  2. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature466(7307), 730–734 (2010). [CrossRef] [PubMed]
  3. S. Castelletto, B. C. Johnson, N. Stavrias, T. Umeda, and T. Ohshima, “Efficiently engineered room temperature single photons in silicon carbide,” arXiv:1210:5047.
  4. A. M. Zaitsev, Optical Properties of Diamond (Springer, 2001).
  5. R. Mildren and J. Rabeau, Optical Engineering of Diamond (Wiley, 2013).
  6. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science276(5321), 2012–2014 (1997). [CrossRef]
  7. S.-Y. Lee, M. Widmann, T. Rendler, M. W. Doherty, T. M. Babinec, S. Yang, M. Eyer, P. Siyushev, B. J. M. Hausmann, M. Loncar, Z. Bodrog, A. Gali, N. B. Manson, H. Fedder, and J. Wrachtrup, “Readout and control of a single nuclear spin with a metastable electron spin ancilla,” Nat. Nanotechnol.8(7), 487–492 (2013). [CrossRef] [PubMed]
  8. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8(5), 383–387 (2009). [CrossRef] [PubMed]
  9. M. Steger, K. Saeedi, M. L. W. Thewalt, J. J. L. Morton, H. Riemann, N. V. Abrosimov, P. Becker, and H.-J. Pohl, “Quantum information storage for over 180 s using donor spins in a 28Si “semiconductor vacuum”,” Science336(6086), 1280–1283 (2012). [CrossRef] [PubMed]
  10. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color center in a diamond cavity,” Nat. Photonics5(5), 301–305 (2011). [CrossRef]
  11. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett.109(3), 033604 (2012). [CrossRef] [PubMed]
  12. J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanged single-photon emission from a diamond-silver aperture,” Nat. Photonics5(12), 738–743 (2011). [CrossRef]
  13. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol.5(3), 195–199 (2010). [CrossRef] [PubMed]
  14. B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett.12(3), 1578–1582 (2012). [CrossRef] [PubMed]
  15. M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett.12(12), 6084–6089 (2012). [CrossRef] [PubMed]
  16. G. L. Harris, Properties of Silicon Carbide (INSPEC, 1995).
  17. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vucković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express17(25), 22609–22615 (2009). [CrossRef] [PubMed]
  18. K. Rivoire, S. Buckley, and J. Vučković, “Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion,” Opt. Express19(22), 22198–22207 (2011). [CrossRef] [PubMed]
  19. K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett.93(6), 063103 (2008). [CrossRef]
  20. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011). [CrossRef] [PubMed]
  21. W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett.100(22), 223501 (2012). [CrossRef]
  22. S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tuennermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett.103(5), 051117 (2013). [CrossRef]
  23. S. Yamada, B.-S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett.99(20), 201102 (2011). [CrossRef]
  24. B.-S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express19(12), 11084–11089 (2011). [CrossRef] [PubMed]
  25. J.-H. Lee, I. Bargatin, J. Park, K. M. Milaninia, L. S. Theogarajan, R. Sinclair, and R. T. Howe, “Smart-cut layer transfer of single-crystal SiC using spin-on-glass,” J. Vac. Sci. Technol. B30(4), 042001 (2012). [CrossRef]
  26. G. Ferro, T. Chassagne, A. Leycuras, F. Cauwet, and Y. Monteil, “Strain tailoring in 3C-SiC heteroepitaxial layers grown on Si(100),” Chem. Vapor Depos.12(8-9), 483–488 (2006). [CrossRef]
  27. N. V. Trivino, U. Dharanipathy, J.-F. Carlin, Z. Diao, R. Houdre, and N. Grandjean, “Integrated photonics on silicon with wide bandgap GaN semiconductor,” Appl. Phys. Lett.102(8), 081120 (2013). [CrossRef]
  28. S. N. Rashkeev, W. R. L. Lambrecht, and B. Segall, “Second-harmonic generation in SiC polytypes,” Phys. Rev. B57(16), 9705–9715 (1998). [CrossRef]
  29. S. Buckley, M. Radulaski, K. Biermann, and J. Vuckovic, “Second harmonic generation in photonic crystal cavities in (111)-oriented GaAs,” Appl. Phys. Lett.103(21), 211117 (2013). [CrossRef]
  30. A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X.-L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat Commun4, 1819 (2013). [CrossRef] [PubMed]
  31. J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, and M. Lipson, “High Q SiC microresonators,” Opt. Express21(14), 16882–16887 (2013). [CrossRef] [PubMed]
  32. X. Lu, J. Y. Lee, P. X. Feng, and Q. Lin, “Silicon carbide microdisk resonator,” Opt. Lett.38(8), 1304–1306 (2013). [CrossRef] [PubMed]
  33. J. O'Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics3(12), 687–695 (2009). [CrossRef]
  34. A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vuckovic, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys.13(5), 055025 (2011). [CrossRef]
  35. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009). [CrossRef] [PubMed]
  36. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009). [CrossRef]
  37. Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett.82(11), 1661 (2003). [CrossRef]
  38. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009). [CrossRef]
  39. M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Loncar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett.36(3), 421–423 (2011). [CrossRef] [PubMed]
  40. Y. Gong and J. Vuckovic, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett.96(3), 031107 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited