OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32630–32642

Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements

Rodrigo Watté, Nghia Nguyen Do Trong, Ben Aernouts, Chyngyz Erkinbaev, Josse De Baerdemaeker, Bart Nicolaï, and Wouter Saeys  »View Author Affiliations

Optics Express, Vol. 21, Issue 26, pp. 32630-32642 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1264 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A metamodeling approach is introduced and applied to efficiently estimate the bulk optical properties of turbid media from spatially resolved spectroscopy (SRS) measurements. The model has been trained on a set of liquid phantoms covering a wide range of optical properties representative for food and agricultural products and was successfully validated in forward and inverse mode on phantoms not used for training the model. With relative prediction errors of 10% for the estimated bulk optical properties the potential of this metamodeling approach for the estimation of the optical properties of turbid media from spatially resolved spectroscopy measurements has been demonstrated.

© 2013 Optical Society of America

OCIS Codes
(290.5850) Scattering : Scattering, particles
(290.7050) Scattering : Turbid media
(350.5500) Other areas of optics : Propagation
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:

Original Manuscript: October 2, 2013
Revised Manuscript: November 23, 2013
Manuscript Accepted: December 13, 2013
Published: December 24, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Rodrigo Watté, Nghia Nguyen Do Trong, Ben Aernouts, Chyngyz Erkinbaev, Josse De Baerdemaeker, Bart Nicolaï, and Wouter Saeys, "Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements," Opt. Express 21, 32630-32642 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Tuchin, Tissue Optics – Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007).
  2. V. Tuchin, Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues (CRC Press, 2008).
  3. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999). [CrossRef] [PubMed]
  4. T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004). [CrossRef] [PubMed]
  5. D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006). [CrossRef] [PubMed]
  6. A. Garcia-Uribe, J. Zou, T.-H. Chang, M. Duvic, V. Prieto, and L. V. Wang, “Oblique-incidence spatially resolved diffuse reflectance spectroscopic diagnosis of skin cancer,” Proc. SPIE7572, 75720L (2010). [CrossRef]
  7. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett.74(6), 874–876 (1999). [CrossRef]
  8. A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001). [CrossRef] [PubMed]
  9. A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography,” Opt. Express11(8), 853–867 (2003). [CrossRef] [PubMed]
  10. B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE3548, 17–26 (1998). [CrossRef]
  11. J. Y. Le Pommellec and J. P. L'Huillier, “Determination of the optical properties of breast tissues using frequency-resolved transillumination: basic theory and preliminary results,” Proc. SPIE4161, 202–215 (2000). [CrossRef]
  12. A. Ishimaru, “Theory and application of wave propagation and scattering in random media,” Proc. IEEE65(7), 1030–1061 (1977). [CrossRef]
  13. A. Ishimaru, Wave propagation and scattering in random media (Academic, 1978).
  14. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Finite element model for the coupled radiative transfer equation and diffusion approximation,” Int. J. Numer. Methods Eng.65(3), 383–405 (2006). [CrossRef]
  15. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995). [CrossRef] [PubMed]
  16. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express10(3), 159–170 (2002). [CrossRef] [PubMed]
  17. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt.13(6), 060504 (2008). [CrossRef] [PubMed]
  18. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express17(22), 20178–20190 (2009). [CrossRef] [PubMed]
  19. A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt.28(12), 2210–2215 (1989). [CrossRef] [PubMed]
  20. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992). [CrossRef] [PubMed]
  21. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A14(1), 246–254 (1997). [CrossRef] [PubMed]
  22. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt.37(31), 7401–7409 (1998). [CrossRef] [PubMed]
  23. I. Couckuyt, F. Declerq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-Based Infill Optimization Applied to Electromagnetic Problems,” Int. J. RF Microw. C. E.20(5), 492–501 (2010). [CrossRef]
  24. D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design,” J. Mach. Learn. Res.11, 2051–2055 (2010).
  25. T. W. Simpson, J. D. Poplinsky, P. N. Koch, and J. K. Allen, “Meta-models for computer-based engineering design: survey and recommendations,” Eng. Comput.17(2), 129–150 (2001). [CrossRef]
  26. G. G. Wang and S. Shan, “Review of metamodeling techniques in support of engineering design optimization,” J. Mech. Des.129(4), 370–380 (2007). [CrossRef]
  27. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt.40(7), 1155–1164 (2001). [CrossRef] [PubMed]
  28. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt.35(13), 2304–2314 (1996). [CrossRef] [PubMed]
  29. L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt.57(13), 1163–1170 (2010). [CrossRef]
  30. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44(11), 2104–2114 (2005). [CrossRef] [PubMed]
  31. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006). [CrossRef] [PubMed]
  32. I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: Implementation and performance analysis,” Adv. Eng. Soft.49, 1–13 (2012). [CrossRef]
  33. D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive black-box functions,” J. Glob. Optim.13(4), 455–492 (1998). [CrossRef]
  34. J. Sacks, W. J. Welch, T. Mitchell, and H. P. Wynn, “Design and analysis of computer experiments,” Stat. Sci.4(4), 423–435 (1989). [CrossRef]
  35. J. Staum, “Better simulation metamodeling: The why, what, and how of stochastic Kriging,” in Proceedings of the Winter Simulation Conference (Austin, TX, 2009), pp. 119–133. [CrossRef]
  36. I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, (Funchal, 2009), p. 52.
  37. D. J. J. Toal, N. W. Bressloff, and A. J. Keane, “Kriging Hyperparameter Tuning Strategies,” AIAA J.46(5), 1240–1252 (2008). [CrossRef]
  38. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  39. P. Di Ninni, F. Martelli, and G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Express18(26), 26854–26865 (2010). [CrossRef] [PubMed]
  40. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt.12(3), 555–563 (1973). [CrossRef] [PubMed]
  41. E. Verhoelst, F. Bamelis, B. De Ketelaere, N. N. Trong, J. De Baerdemaeker, W. Saeys, M. Tsuta, and E. Decuypere, “The potential of spatially resolved spectroscopy for monitoring angiogenesis in the chorioallantoic membrane,” Biotechnol. Prog.27(6), 1785–1792 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited