OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32690–32698

Quasi-phase-matched second harmonic generation in silicon nitride ring resonators controlled by static electric field

Rafael E. P. de Oliveira and Christiano J. S. de Matos  »View Author Affiliations


Optics Express, Vol. 21, Issue 26, pp. 32690-32698 (2013)
http://dx.doi.org/10.1364/OE.21.032690


View Full Text Article

Enhanced HTML    Acrobat PDF (1784 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Actively-controlled second harmonic generation in a silicon nitride ring resonator is proposed and simulated. The ring was designed to resonate at both pump and second harmonic wavelengths and quasi-phase-matched frequency conversion is induced by a periodic static electric field generated by voltage applied to electrodes arranged along the ring. Nonlinear propagation simulations were undertaken and an efficiency of −21.67 dB was calculated for 60 mW of pump power at 1550 nm and for a 30V applied voltage, which compares favorably with demonstrated all-optical second harmonic generation in integrated microresonators. Transient effects were also evaluated. The proposed design can be exploited for the construction of electro-optical devices based on nonlinear effects in CMOS compatible circuits.

© 2013 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(250.4390) Optoelectronics : Nonlinear optics, integrated optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 18, 2013
Revised Manuscript: December 19, 2013
Manuscript Accepted: December 19, 2013
Published: December 24, 2013

Citation
Rafael E. P. de Oliveira and Christiano J. S. de Matos, "Quasi-phase-matched second harmonic generation in silicon nitride ring resonators controlled by static electric field," Opt. Express 21, 32690-32698 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-26-32690


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol.23(12), 4222–4238 (2005). [CrossRef]
  2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  3. M. Krause, H. Renner, and E. Brinkmeyer, “Silicon Raman amplifiers with ring-resonator-enhanced pump power,” IEEE J. Sel. Top. Quantum Electron.16(1), 216–225 (2010). [CrossRef]
  4. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006). [CrossRef] [PubMed]
  5. S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics1(5), 293–296 (2007). [CrossRef]
  6. D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron.6(6), 1312–1317 (2000). [CrossRef]
  7. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics7(8), 597–607 (2013). [CrossRef]
  8. M. Lipson, “Compact electro-optic modulators on a silicon chip,” IEEE J. Sel. Top. Quantum Electron.12(6), 1520–1526 (2006). [CrossRef]
  9. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010). [CrossRef]
  10. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express16(7), 4881–4887 (2008). [CrossRef] [PubMed]
  11. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express16(17), 12987–12994 (2008). [CrossRef] [PubMed]
  12. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express19(12), 11415–11421 (2011). [CrossRef] [PubMed]
  13. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011). [CrossRef] [PubMed]
  14. J. L. O’Brien, “Exploiting entanglement,” Science330(6004), 588–589 (2010). [CrossRef]
  15. N. B. Grosse, W. P. Bowen, K. McKenzie, and P. K. Lam, “Harmonic entanglement with second-order nonlinearity,” Phys. Rev. Lett.96, 63601 (2006).
  16. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010). [CrossRef] [PubMed]
  17. R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H. A. Bachor, and J. Mlynek, “Bright squeezed light from a singly resonant frequency doubler,” Phys. Rev. Lett.72(24), 3807–3810 (1994). [CrossRef] [PubMed]
  18. S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, “Generation of squeezed light by intracavity frequency doubling,” Phys. Rev. A38(9), 4931–4934 (1988). [CrossRef] [PubMed]
  19. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys.77(2), 513–577 (2005). [CrossRef]
  20. A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussensveig, and M. Lipson, “Observation of on-chip optical squeezing,” in The Rochester Conferences on Coherence and Quantum Optics and the Quantum Information and Measurement meeting, OSA Technical Digest (online) (Optical Society of America, 2013), paper M6.67.
  21. D. G. Rabus, Integrated Ring Resonators. The Compendium (Springer, 2007).
  22. R. W. Boyd, Nonlinear Optics (Academic, 2003), Chap. 2.
  23. R. Kashyap, “Phase-matched periodic electric-field-second-harmonic generation in optical fibers,” J. Opt. Soc. Am. B6(3), 313–328 (1989). [CrossRef]
  24. R. E. P. de Oliveira, M. Lipson, and C. J. S. de Matos, “Electrically controlled silicon nitride ring resonator for quasi-phase matched second-harmonic generation,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF3M.5. [CrossRef]
  25. H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochem. Soc.120(2), 295–300 (1973). [CrossRef]
  26. M. Bass, Handbook of Optics Volume II, Measurements and Properties (McGraw-Hill, 1995), Chap. 3.
  27. R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron.18(7), 1062–1072 (1982). [CrossRef]
  28. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express20(27), 27999–28008 (2012). [CrossRef] [PubMed]
  29. M. W. Mitchell, “Parametric down-conversion from a wave-equation approach: Geometry and absolute brightness,” Phys. Rev. A79(4), 043835 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited