OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 2538–2550

Intensity noise correlations in a two-frequency VECSEL

S. De, V. Pal, A. El Amili, G. Pillet, G. Baili, M. Alouini, I. Sagnes, R. Ghosh, and F. Bretenaker  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 2538-2550 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1628 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an experimental and theoretical study of the intensity noise correlation between the two orthogonally polarized modes in a dual frequency Vertical External Cavity Surface Emitting Laser (VECSEL). The dependence of the noise correlation spectra on the non-linear coupling between the two orthogonally polarized modes is put into evidence. Our results show that for small coupling the noise correlation amplitude and phase spectra remain nearly flat (around −6 dB and 0° respectively) within the frequency range of our interest (from 100 kHz to 100 MHz). But for higher values of the coupling constant the low frequency behaviors (below 1–2 MHz) of the correlation amplitude and phase spectra are drastically changed, whereas above this cut-off frequency (1–2 MHz) the correlation spectra are almost independent of coupling strength. The theoretical model is based on the assumptions that the only source of noise in the frequency range of our interest for the two modes are pump noises, which are white noises of equal amplitude but partially correlated.

© 2013 OSA

OCIS Codes
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 16, 2012
Revised Manuscript: January 14, 2013
Manuscript Accepted: January 15, 2013
Published: January 28, 2013

S. De, V. Pal, A. El Amili, G. Pillet, G. Baili, M. Alouini, I. Sagnes, R. Ghosh, and F. Bretenaker, "Intensity noise correlations in a two-frequency VECSEL," Opt. Express 21, 2538-2550 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, “Offset phase locking of Er:Yb:Glass laser eigenstates for RF photonics applications,” IEEE Photon. Technol. Lett.13, 367–369 (2001). [CrossRef]
  2. S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microwave Theory and Techniques54, 847–853 (2006). [CrossRef]
  3. G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol.26, 2764–2773 (2008). [CrossRef]
  4. L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt.41, 5702–5712 (2002). [CrossRef] [PubMed]
  5. M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable optical microwave source using spatially resolved laser eigenstates,” Opt. Lett.22, 384–386 (1997). [CrossRef] [PubMed]
  6. M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett.10, 1554–1556 (1998). [CrossRef]
  7. R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett.40, 942–943 (2004). [CrossRef]
  8. F. T. Arecchi, G. L. Lippi, G. P. Puccioni, and J. R. Tredicce, “Deterministic chaos in laser with injected signal,” Opt. Commun.51, 308–314 (1984). [CrossRef]
  9. S. Taccheo, P. Laporta, O. Svelto, and G. de Geronimo, “Intensity noise reduction in a single-frequency ytterbium-codoped erbium laser,” Opt. Lett.21, 1747–1749 (1996). [CrossRef] [PubMed]
  10. G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett.34, 3421–3423 (2009). [CrossRef] [PubMed]
  11. M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).
  12. M. M. Tehrani and L. Mandel, “Coherence theory of the ring laser,” Phys. Rev. A17, 677–693 (1978). [CrossRef]
  13. V. Pal, P. Trofimoff, B.-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Express18, 5008–5014 (2010). [CrossRef] [PubMed]
  14. M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A52, 1728–1739 (1995). [CrossRef] [PubMed]
  15. J. Martin-Regalado, M. San Miguel, N. B. Abraham, and F. Prati, “Polarization switching in quantum-well vertical-cavity surface-emitting lasers,” Opt. Lett.21, 351–353 (1996). [CrossRef] [PubMed]
  16. M. Travagnin, M. P. van Exter, and J. P. Woerdman, “Influence of carrier dynamics on the polarization stability and noise-induced polarization hopping in surface-emitting semiconductor lasers,” Phys. Rev. A56, 1497–1507 (1997). [CrossRef]
  17. G. Baili, F. Bretenaker, M. Alouini, L. Morvan, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers,” J. Lightwave Technol.26, 952–961 (2008). [CrossRef]
  18. A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “High power single–frequency continuously–tunable compact extended–cavity semiconductor laser,” Opt. Express17, 9503–9508 (2009). [CrossRef] [PubMed]
  19. G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications,” Opt. Lett.32, 650–652 (2007). [CrossRef] [PubMed]
  20. G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett.87, 44005 (2009). [CrossRef]
  21. D. E. McCumber, “Intensity fluctuations in the output of cw laser oscillators. I,” Phys. Rev.141, 306–322 (1966). [CrossRef]
  22. K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, “Alternate time scale in multimode lasers,” Phys. Rev. A46, 1692–1695 (1992). [CrossRef] [PubMed]
  23. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18, 259–264 (1982). [CrossRef]
  24. C. H. Henry, “Phase noise in semiconductor laser,” J. Lightwave. Technol.4, 298–311 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited