OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 2563–2580

Using radiative transfer equation to model absorption by thin Cu(In,Ga)Se2 solar cells with Lambertian back reflector

N. Dahan, Z. Jehl, J. F. Guillemoles, D. Lincot, N. Naghavi, and J.-J. Greffet  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 2563-2580 (2013)
http://dx.doi.org/10.1364/OE.21.002563


View Full Text Article

Enhanced HTML    Acrobat PDF (2263 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the optical absorption in a thin Cu(In,Ga)Se2 solar cell with a Lambertian white paint beneath a transparent back contact. Although this configuration has been proposed more than 30 years ago, it turns out that rigorous simulation of Maxwell’s equations demand powerful numerical calculations. This type of approach is time consuming and does not provide a physical insight in the absorption mechanisms. Here, we use the radiative transfer equation to deal with multiple scattering of the diffuse part of the light. The collimated part is treated accounting for wave effects. Our model is in good agreement with optical measurements.

© 2013 OSA

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(040.5350) Detectors : Photovoltaic
(350.6050) Other areas of optics : Solar energy

ToC Category:
Solar Energy

History
Original Manuscript: October 22, 2012
Revised Manuscript: December 11, 2012
Manuscript Accepted: January 3, 2013
Published: January 28, 2013

Citation
N. Dahan, Z. Jehl, J. F. Guillemoles, D. Lincot, N. Naghavi, and J.-J. Greffet, "Using radiative transfer equation to model absorption by thin Cu(In,Ga)Se2 solar cells with Lambertian back reflector," Opt. Express 21, 2563-2580 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-2563


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin film solar cells beyond 20%,” Prog. Photovolt: Res. Appl.19, 894–897 (2011). [CrossRef]
  2. K. Orgassa, H. W. Schock, and J. H. Werner, “Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells,” Thin Solid Films431–432, 387–391 (2003). [CrossRef]
  3. A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films515, 5968–5972 (2007). [CrossRef]
  4. Z. Jehl Li Kao, N. Naghavi, F. Erfurth, J. F. Guillemoles, I. Gérard, A. Etcheberry, J. L. Pelouard, S. Collin, G. Voorwinden, and D. Lincot, “Towards ultrathin copper indium gallium diselenide solar cells: proof of concept study by chemical etching and gold back contact engineering,” Prog. Photovolt: Res. Appl.20, 582–587 (2012). [CrossRef]
  5. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72, 899–907 (1982). [CrossRef]
  6. H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett.42, 968–970 (1983). [CrossRef]
  7. J. Morris, R. R. Arya, J. G. O’Dowd, and S. Wiedeman, “Absorption enhancement in hydrogenated amorphous silicon-based solar cells,” J. Appl. Phys.67, 1079–1087 (1990). [CrossRef]
  8. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt: Res. Appl.10, 235–241 (2002). [CrossRef]
  9. J. Malmström, O. Lundberg, and L. Stolt, “Potential for light trapping in Cu(In,Ga)Se2 solar cells,” in 3rd World Conference on Photovoltaic Energy Conversion, K. Kurokawa, ed. (Arisumi, Osaka, Japan, 2003), pp. 344–347.
  10. F. Leblanc, J. Perrin, and J. Schmitt, “Numerical modeling of the optical properties of hydrogenated amorphous-silicon-based p-i-n solar cells deposited on rough transparent conducting oxide substrates,” J. Appl. Phys.75, 1074–1087 (1994). [CrossRef]
  11. M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys.88, 6436–6443 (2000). [CrossRef]
  12. J. Krč, M. Zeman, F. Smole, and M. Topič, “Optical modeling of a-Si:H solar cells deposited on textured glass/SnO2 substrates,” J. Appl. Phys.92, 749–755 (2002). [CrossRef]
  13. J. Krč, M. Topič, M. Vukadinović, and F. Smole, “Optical modeling of a-Si:H-based solar cells with smooth and rough boundaries,” in 16th European Photovoltaic Solar Energy Conference, James and James, ed. (Alden, Glasgow, UK, 2000), pp. 522–525.
  14. J. Krč, F. Smole, and M. Topič, “Analysis of light scattering in amorphous Si:H solar cells by a one-dimensional semi-coherent optical model,” Prog. Photovolt: Res. Appl.11, 15–26 (2003). [CrossRef]
  15. J. Springer, A. Poruba, A. Fejfar, M. Vanecek, L. Feitcknecht, N. Wyrsch, J. Meier, and A. Shah, “Nanotextured thin film silicon solar cells: optical model,” in 16th European Photovoltaic Solar Energy Conference, James and James, ed. (Alden, Glasgow, UK, 2000), pp. 434–437.
  16. J. Springer, A. Poruba, and M. Vanecek, “Improved three-dimensional optical model for thin-film silicon solar cells,” J. Appl. Phys.96, 5329–5337 (2004). [CrossRef]
  17. R. Santbergen and R. J. C. van Zolingen, “The absorption factor of crystalline silicon PV cells: a numerical and experimental study,” Sol. Energ. Mat. Sol. Cells92, 432–444 (2008). [CrossRef]
  18. G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge, New York, 1999). [CrossRef]
  19. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge, UK, 2006).
  20. I. R. Howell, R. Siegel, and M. P. Mengüç, Thermal Radiation and Heat Transfer (CRC, Boca Raton, Florida, 2010).
  21. A. K. Fung, Microwave Scattering and Emission Models and Their Applications (Artech House, Norwood, Mass., 1994).
  22. L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York, 2000). [CrossRef]
  23. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.28, 2331–2336 (1989). [CrossRef] [PubMed]
  24. B. Lipovšek, J. Krč, O. Isabella, M. Zeman, and M. Topič, “Modeling and optimization of white paint back reectors for thin-lm silicon solar cells,” J. Appl. Phys.108, 103115 (2010). [CrossRef]
  25. L. Ryzhik, G. Papanicolaou, and J. B. Keller, “Transport equations for elastic and other waves in random media,” Wave Motion24, 327–370 (1996). [CrossRef]
  26. L. Roux, P. Mareschal, Nicolas Vukadinovic, J.-B. Thibaud, and J.-J. Greffet, “Scattering by a slab containing randomly located cylinders: comparison between radiative transfer and electromagnetic simulation,” J. Opt. Soc. Am. A18, 374–384 (2001). [CrossRef]
  27. F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J.-J. Greffet, “Influence of microroughness on emissivity,” J. Appl. Phys.96, 2656–2664 (2004). [CrossRef]
  28. K. Tang, R. A. Dimenna, and R. O. Buckius, “Regions of validity of the geometric optics approximation for angular scattering from very rough surfaces,” Int. J. Heat Mass Transfer40, 49–59 (1996). [CrossRef]
  29. R. Carminati and J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett.82, 1660–1663 (1999). [CrossRef]
  30. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).
  31. K. F. Evans and G. L. Stephens, “A new polarized atmospheric radiative transfer model,” J. Quant. Spectrosc. Radiat. Transfer46, 413–423 (1991). [CrossRef]
  32. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  33. P. Yeh, Optical Waves in Layered Media (Wiley, New-York, 1988).
  34. M. A. Dupertuis, B. Acklin, and M. Proctor, “Generalized energy balance and reciprocity relations for thin-film optics,” J. Opt. Soc. Am. A11, 1167–1174 (1994). [CrossRef]
  35. W. Szabelak and W. Nasalski, “Enhancement of cross-polarized beam components at a metamaterial surface,” Appl. Phys. B103, 369–375 (2011). [CrossRef]
  36. P. C. Y. Chang, J. G. Walker, and K. I. Hopcraft, “Ray tracing in absorbing media,” J. Quant. Spectrosc. Radiat. Transfer96, 327–341 (2005). [CrossRef]
  37. M. Bouttemy, P. Tran-Van, I. Gérard, T. Hildebrandt, A. Causier, J. L. Pelouard, G. Dagher, Z. Jehl, N. Naghavi, G. Voorwinden, B. Dimmler, M. Powalla, J. F. Guillemoles, D. Lincot, and A. Etcheberrya, “Thinning of CIGS solar cells: part I: chemical processing in acidic bromine solutions,” Thin Solid Films519, 7207–7211 (2011). [CrossRef]
  38. P. J. Rostan, J. Mattheis, G. Bilger, U. Rau, and J. H. Werner, “Formation of transparent and ohmic ZnO:Al/MoSe2 contacts for bifacial Cu(In,Ga)Se2 solar cells and tandem structures,” Thin Solid Films480–481, 67–70 (2005). [CrossRef]
  39. N. Dahan, Z. Jehl, T. Hildebrandt, J.-J. Greffet, J.-F. Guillemoles, D. Lincot, and N. Naghavi, “Optical approaches to improve the photocurrent generation in Cu(In,Ga)Se2 solar cells with absorber thicknesses down to 0.5 μm,” J. Appl. Phys.112, 094902 (2012). [CrossRef]
  40. J. Rousset, E. Saucedo, and D. Lincot, “Extrinsic doping of electrodeposited zinc oxide films by chlorine for transparent conductive oxide applications,” Chem. Mater.21, 534–540 (2009). [CrossRef]
  41. S. Kumar, A. Majumdar, and C. L. Tien, “The differential-discrete-ordinate method for solutions of the equation of radiative transfer,” J. Heat Transfer112, 424–429 (1990). [CrossRef]
  42. Z. Jin and K. Stamnes, “Radiative transfer in nonuniformly refracting layered media: atmosphere-ocean system,” Appl. Opt.33, 431–442 (1994). [CrossRef] [PubMed]
  43. J. Caron, C. Andraud, and J. Lafait, “Radiative transfer calculations in multilayer systems with smooth or rough interfaces,” J. Mod. Opt.51, 575–595 (2004). [CrossRef]
  44. L. Li, “Bremmer series, R-matrix propagation algorithm, and numerical modeling of diffraction gratings,” J. Opt. Soc. Am. A11, 2829–2836 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited