OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 2642–2656

Stimulated thermal Rayleigh scattering in optical fibers

Liang Dong  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 2642-2656 (2013)
http://dx.doi.org/10.1364/OE.21.002642


View Full Text Article

Enhanced HTML    Acrobat PDF (1499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, mode instability was observed in optical fiber lasers at high powers, severely limiting power scaling for single-mode outputs. Some progress has been made towards understanding the underlying physics. A thorough understanding of the effect is critical for continued progress of this very important technology area. Mode instability in optical fibers is, in fact, a manifestation of stimulated thermal Rayleigh scattering. In this work, a quasi-closed-form solution for the nonlinear coupling coefficient is found for stimulated thermal Rayleigh scattering in optical fibers. The results help to significantly improve understanding of mode instability.

© 2013 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 29, 2012
Revised Manuscript: December 27, 2012
Manuscript Accepted: January 17, 2013
Published: January 28, 2013

Citation
Liang Dong, "Stimulated thermal Rayleigh scattering in optical fibers," Opt. Express 21, 2642-2656 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-2642


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett.35(2), 94–96 (2010). [CrossRef] [PubMed]
  2. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36(5), 689–691 (2011). [CrossRef] [PubMed]
  3. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber laser amplifiers,” Opt. Express19(14), 13218–13224 (2011). [CrossRef] [PubMed]
  4. F. Stutzki, H. J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett.36(23), 4572–4574 (2011). [CrossRef] [PubMed]
  5. C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express20(1), 440–451 (2012). [CrossRef] [PubMed]
  6. C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19(4), 3258–3271 (2011). [CrossRef] [PubMed]
  7. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express19(24), 23965–23980 (2011). [CrossRef] [PubMed]
  8. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express19(11), 10180–10192 (2011). [CrossRef] [PubMed]
  9. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express20(10), 11407–11422 (2012). [CrossRef] [PubMed]
  10. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermally induced mode coupling in rare-earth doped fiber amplifiers,” Opt. Lett.37(12), 2382–2384 (2012). [CrossRef] [PubMed]
  11. C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, “Stimulated Rayleigh scattering,” Phys. Rev. Lett.18(4), 107–109 (1967). [CrossRef]
  12. R. M. Herman and M. A. Gray, “Theoretical prediction of the stimulated thermal Rayleigh scattering in liquid,” Phys. Rev. Lett.19(15), 824–828 (1967). [CrossRef]
  13. D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, “Stimulated thermal Rayleigh scattering,” Phys. Rev. Lett.19(15), 828–830 (1967). [CrossRef]
  14. I. L. Fabelinskii and V. S. Starunov, “Some studies of the spectra of thermal and stimulated molecular scattering of light,” Appl. Opt.6(11), 1793–1804 (1967). [CrossRef] [PubMed]
  15. C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, “Stimulated thermal Rayleigh scattering,” Phys. Rev.175(1), 271–274 (1968). [CrossRef]
  16. W. Rother, D. Pohl, and W. Kaiser, “Time and frequency dependence of stimulated thermal Rayleigh scattering,” Phys. Rev. Lett.22(18), 915–918 (1969). [CrossRef]
  17. N. Bloembergen, W. H. Lowdermilk, M. Matsuoka, and C. S. Wong, “Theory of stimulated concentration scattering,” Phys. Rev. A3(1), 404–412 (1971). [CrossRef]
  18. L. M. Peterson and T. A. Wiggins, “Forward stimulated thermal Rayleigh scattering,” J. Opt. Soc. Am.63(1), 13–16 (1973). [CrossRef]
  19. R. C. Desai, M. D. Levenson, and J. A. Barker, “Forced Rayleigh scattering: thermal and acoustic effects in phase-conjugate,” Phys. Rev. A27(4), 1968–1976 (1983). [CrossRef]
  20. H. J. Hoffman, “Thermally induced degenerate four-wave mixing,” IEEE J. Quantum Electron.22(4), 552–562 (1986). [CrossRef]
  21. H. J. Hoffman, “Thermally induced phase conjugation by transient real-time holography: a review,” J. Opt. Soc. Am. B3(2), 253–273 (1986). [CrossRef]
  22. R. W. Boyd, “Nonlinear Optics,” third edition, Elsevier, 2008.
  23. A. W. Snyder and J. D. Love, “Optical Waveguide Theory,” Chapman and Hall, 1983.
  24. M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, “Thermal effects in doped fibers,” J. Lightwave Technol.16(6), 1013–1023 (1998). [CrossRef]
  25. C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express20(12), 12912–12925 (2012). [CrossRef] [PubMed]
  26. A. V. Smith and J. J. Smith, “Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers,” Opt. Express20(22), 24545–24558 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited