OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 2674–2682

Rytov approximation for x-ray phase imaging

Yongjin Sung and George Barbastathis  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 2674-2682 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1462 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, we check the accuracy of the first-order Rytov approximation with a homogeneous sphere as a candidate for application in x-ray phase imaging of large objects e.g., luggage at the airport, or a human patient. Specifically, we propose a validity condition for the Rytov approximation in terms of a parameter V that depends on the complex refractive index of the sphere and the Fresnel number, for Fresnel numbers larger than 1000. In comparison with the exact Mie solution, we provide the accuracy of the Rytov approximation in predicting the intensity and phase profiles after the sphere. For large objects, where the Mie solution becomes numerically impractical, we use the principle of similarity to predict the accuracy of the Rytov approximation without explicit calculation of the Mie solution. Finally, we provide the maximum radius of the sphere for which the first order Rytov approximation remains valid within 1% accuracy.

© 2013 OSA

OCIS Codes
(340.7440) X-ray optics : X-ray imaging
(290.5825) Scattering : Scattering theory

ToC Category:
X-ray Optics

Original Manuscript: November 30, 2012
Revised Manuscript: January 15, 2013
Manuscript Accepted: January 16, 2013
Published: January 28, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Yongjin Sung and George Barbastathis, "Rytov approximation for x-ray phase imaging," Opt. Express 21, 2674-2682 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Paganin, Coherent X-ray Optics (Oxford University Press, 2006).
  2. P. C. Diemoz, A. Bravin, and P. Coan, “Theoretical comparison of three X-ray phase-contrast imaging techniques: propagation-based imaging, analyzer-based imaging and grating interferometry,” Opt. Express20(3), 2789–2805 (2012). [CrossRef] [PubMed]
  3. E. Förster, K. Goetz, and P. Zaumseil, “Double crystal diffractometry for the characterization of targets for laser fusion experiments,” Kristall und Technik15(8), 937–945 (1980). [CrossRef]
  4. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997). [CrossRef] [PubMed]
  5. M. Ando, A. Maksimenko, H. Sugiyama, W. Pattanasiriwisawa, K. Hyodo, and C. Uyama, “Simple X-ray dark-and bright-field imaging using achromatic Laue optics,” Jpn. J. Appl. Phys.41(Part 2, No. 9A/B), L1016–L1018 (2002). [CrossRef]
  6. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by X-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys.45(6A), 5254–5262 (2006). [CrossRef]
  7. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008). [CrossRef] [PubMed]
  8. T. Weitkamp, C. David, O. Bunk, J. Bruder, P. Cloetens, and F. Pfeiffer, “X-ray phase radiography and tomography of soft tissue using grating interferometry,” Eur. J. Radiol.68(3Suppl), S13–S17 (2008). [CrossRef] [PubMed]
  9. S. Wilkins, T. Gureyev, D. Gao, A. Pogany, and A. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996). [CrossRef]
  10. X. Wu, H. Liu, and A. Yan, “Optimization of X-ray phase-contrast imaging based on in-line holography,” Nucl. Instrum. Methods Phys. Res. B234(4), 563–572 (2005). [CrossRef]
  11. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high‐energy synchrotron radiation,” Rev. Sci. Instrum.66(12), 5486–5492 (1995). [CrossRef]
  12. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1(4), 153–156 (1969). [CrossRef]
  13. A. J. Devaney, “Inverse-scattering theory within the Rytov approximation,” Opt. Lett.6(8), 374–376 (1981). [CrossRef] [PubMed]
  14. J. B. Keller, “Accuracy and Validity of the Born and Rytov Approximations,” J. Opt. Soc. Am.59, 1003–1004 (1969).
  15. F. Lin and M. Fiddy, “The Born-Rytov controversy: I. Comparing analytical and approximate expressions for the one-dimensional deterministic case,” J. Opt. Soc. Am. A9(7), 1102–1110 (1992). [CrossRef]
  16. E. Kirkinis, “Renormalization group interpretation of the Born and Rytov approximations,” J. Opt. Soc. Am. A25(10), 2499–2508 (2008). [CrossRef] [PubMed]
  17. M. Slaney and A. Kak, Principles of Computerized Tomographic imaging (SIAM, 1988).
  18. M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
  19. M. Slaney, A. C. Kak, and L. E. Larsen, “Limitations of imaging with first-order diffraction tomography,” IEEE Trans. Microw. Theory Tech.32(8), 860–874 (1984). [CrossRef]
  20. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express17(1), 266–277 (2009). [CrossRef] [PubMed]
  21. E. M. Stein and G. L. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, 1971).
  22. C. F. Boliren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (J Wiley & Sons, 1983).
  23. A. A. Neves and D. Pisignano, “Effect of finite terms on the truncation error of Mie series,” Opt. Lett.37(12), 2418–2420 (2012). [CrossRef] [PubMed]
  24. W. G. Melbourne, Radio Occultations Using Earth Satellites: a Wave Theory Treatment (Wiley-Interscience, 2005).
  25. B. Henke, E. Gullikson, and J. C. X. Davis, “X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables54(2), 181–342 (1993). [CrossRef]
  26. F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt.23(22), 4140–4148 (1984). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited