OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 2707–2717

State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing

Bin Fang, Offir Cohen, Jamy B. Moreno, and Virginia O. Lorenz  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 2707-2717 (2013)
http://dx.doi.org/10.1364/OE.21.002707


View Full Text Article

Enhanced HTML    Acrobat PDF (2864 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study theoretically the joint spectral properties of photon-pairs produced through spontaneous four-wave mixing (SFWM) with two spectrally distinct pump pulses in optical fibers. We show that, due to the group velocity difference between the pulses, the signature of the interaction can be significantly different from spontaneous parametric down-conversion or SFWM with a single pump pulse. Specifically, we study the case where temporal walk-off between the pumps enables a gradual turn-on and turn-off of the interaction. By utilizing this property, we develop a new approach towards tailoring the spectral correlations within the generated photon pairs, demonstrating the ability to produce factorable photon-pair states, and hence heralded single photons in a pure wave-packet. We show that the use of two pumps is advantageous over single-pump SFWM approaches towards this goal: the usage of the dual-pump configuration enables, in principle, the creation of completely factorable states without any spectral filtering, even in media for which single-pump SFWM tailoring techniques are unsatisfactory, such as standard polarization-maintaining fiber.

© 2013 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: December 5, 2012
Manuscript Accepted: December 31, 2012
Published: January 28, 2013

Citation
Bin Fang, Offir Cohen, Jamy B. Moreno, and Virginia O. Lorenz, "State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing," Opt. Express 21, 2707-2717 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-2707


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. Massimo Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett.69, 1293–1295 (1992). [CrossRef] [PubMed]
  2. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1, 165–171 (2007). [CrossRef]
  3. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390, 575–579 (1997). [CrossRef]
  4. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001). [CrossRef] [PubMed]
  5. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987). [CrossRef] [PubMed]
  6. A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys.15, 146–161 (2005).
  7. I. A. Walmsley and M. G. Raymer, “Toward quantum-information processing with photons,” Science307, 1733–1734 (2005). [CrossRef] [PubMed]
  8. L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys.12, 093027 (2010). [CrossRef]
  9. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express15, 14870–14886 (2007). [CrossRef] [PubMed]
  10. L. Zhang, C. Söller, O. Cohen, B. J. Smith, and I. A. Walmsley, “Heralded generation of single photons in pure quantum states,” J. Mod. Opt.59, 1525–1537 (2012). [CrossRef]
  11. J. Fan and A. Migdall, “Generation of cross-polarized photon pairs in a microstructure fiber with frequency-conjugate laser pump pulses,” Opt. Express13, 5777–5782 (2005). [CrossRef] [PubMed]
  12. J. Chen, K. Lee, and P. Kumar, “Deterministic quantum splitter based on time-reversed hong-ou-mandel interference,” Phys. Rev. A76, 031804 (2007). [CrossRef]
  13. M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommunication-band source of degenerate entangled photons.” Opt. Lett.35, 802–804 (2010). [CrossRef] [PubMed]
  14. B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers.” Opt. Express17, 23589–23602 (2009). [CrossRef]
  15. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28, 2225–2227 (2003). [CrossRef] [PubMed]
  16. J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett.26, 367–369 (2001). [CrossRef]
  17. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express14, 12388–12393 (2006). [CrossRef] [PubMed]
  18. O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009). [CrossRef] [PubMed]
  19. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express17, 4670–4676 (2009). [CrossRef] [PubMed]
  20. C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A81, 031801 (2010). [CrossRef]
  21. C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 031806 (2011). [CrossRef]
  22. A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express19, 55–65 (2011). [CrossRef]
  23. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, 2007).
  24. R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett.22, 276–278 (1973). [CrossRef]
  25. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express12, 3737–3744 (2004). [CrossRef] [PubMed]
  26. H. Takesue and K. Inoue, “1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express13, 7832–7839 (2005). [CrossRef] [PubMed]
  27. H. Takesue, “Entangled photon pair generation using silicon wire waveguides,” IEEE J. Sel. Top. Quantum Electron.18, 1722–1732 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited