OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 2757–2776

A generalized “cut and projection” algorithm for the generation of quasiperiodic plasmonic concentrators for high efficiency ultra-thin film photovoltaics

Patrick W. Flanigan, Aminy E. Ostfeld, Natalie G. Serrino, Zhen Ye, and Domenico Pacifici  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 2757-2776 (2013)
http://dx.doi.org/10.1364/OE.21.002757


View Full Text Article

Enhanced HTML    Acrobat PDF (9502 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This report will present a generalized two-dimensional quasiperiodic (QP) tiling algorithm based on de Bruijn’s “cut and projection” method for use in plasmonic concentrator (PC) / photovoltaic hybrid devices to produce wide-angle, polarization-insensitive, and broadband light absorption enhancement. This algorithm can be employed with any PC consisting of point-like scattering objects, and can be fine-tuned to achieve a high spatial density of points and high orders of local and long-range rotational symmetry. Simulations and experimental data demonstrate this enhancement in ultra-thin layers of organic photovoltaic materials resting on metallic films etched with arrays of shallow sub-wavelength nanoholes. These devices work by coupling the incident light to surface plasmon polariton (SPP) modes that propagate along the dielectric / metal interface. This effectively increases the scale of light-matter interaction, and can also result in constructive interference between propagating SPP waves. By comparing PCs made with random, periodic, and QP arrangements, it is clear that QP is superior in intensifying the local fields and enhancing absorption in the active layer.

© 2013 OSA

OCIS Codes
(160.4890) Materials : Organic materials
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Solar Energy

History
Original Manuscript: October 22, 2012
Revised Manuscript: December 11, 2012
Manuscript Accepted: January 5, 2013
Published: January 29, 2013

Citation
Patrick W. Flanigan, Aminy E. Ostfeld, Natalie G. Serrino, Zhen Ye, and Domenico Pacifici, "A generalized “cut and projection” algorithm for the generation of quasiperiodic plasmonic concentrators for high efficiency ultra-thin film photovoltaics," Opt. Express 21, 2757-2776 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-2757


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Snaith, L. Schmidt-Mende, M. Chiesa, and M. Grätzel, “Light intensity, temperature, and thickness dependence of the open-circuit voltage in solid-state dye-sensitized solar cells,” Phys. Rev. B74(4), 045306 (2006). [CrossRef]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  3. S. Pillai and M. A. Green, “Plasmonics for photovoltaics applications,” Sol. Energy Mater. Sol. Cells94(9), 1481–1486 (2010). [CrossRef]
  4. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett.93(12), 121904 (2008). [CrossRef]
  5. V. E. Ferry, M. A. Vershuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95(18), 183503 (2009). [CrossRef]
  6. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009). [CrossRef]
  7. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18(S2Suppl 2), A237–A245 (2010). [CrossRef] [PubMed]
  8. L. Dal Negro and S. V. Boriskina. “Deterministic aperiodic nanostructures for photonics and plasmonics applications.” Laser & Photonics Rev. 1–41 (2011).
  9. Y. A. Akimov and W. S. Koh, “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells,” Photonics6, 155–161 (2011).
  10. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011). [CrossRef] [PubMed]
  11. A. E. Ostfeld and D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultra-thin film organic photovoltaics,” Appl. Phys. Lett.98(11), 113112 (2011). [CrossRef]
  12. S. Mei, T. Jie, L. Zhi-Yuan, C. Bing-Ying, Z. Dao-Zhong, J. Ai-Zi, and Y. Hai-Fang, “The role of periodicity in enhanced transmission through subwavelength hole arrays,” Chin. Phys. Lett.23(2), 486–488 (2006). [CrossRef]
  13. F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett.89(12), 121115 (2006). [CrossRef]
  14. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature446(7135), 517–521 (2007). [CrossRef] [PubMed]
  15. R. Penrose, “The role of aesthetics in pure and applied mathematical research,” Bull. Inst. Math. Appl.10, 266–271 (1974).
  16. N. G. de Bruijn, “Algebraic theory of Penrose's non-periodic tilings of the plane, Pt. I & II,” Kon. Nederl. Akad. Wetensch. Proc. Ser. A84, 39–66 (1981).
  17. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  18. J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express16(23), 19001–19017 (2008). [CrossRef] [PubMed]
  19. D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express16(12), 9222–9238 (2008). [CrossRef] [PubMed]
  20. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1(7), 402–406 (2007). [CrossRef]
  21. G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. (Deerfield Beach Fla.)21(13), 1323–1338 (2009). [CrossRef]
  22. M. Reyes-Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends,” Appl. Phys. Lett.87(8), 083506 (2005). [CrossRef]
  23. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater.15(10), 1617–1622 (2005). [CrossRef]
  24. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl.20(1), 12–20 (2012). [CrossRef]
  25. L. Lüer, H.-J. Egelhaaf, D. Oelkrug, G. Cerullo, G. Lanzani, B.-H. Huisman, and D. de Leeuw, “Oxygen-induced quenching of photoexcited states in polythiophene films,” Org. Electron.5(1-3), 83–89 (2004). [CrossRef]
  26. P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, “Exciton diffusion measurements in poly(3-hexylthiophene),” Adv. Mater. (Deerfield Beach Fla.)20(18), 3516–3520 (2008). [CrossRef]
  27. A. J. Moule and K. Meerholz, “Interference method for the determination of the complex refractive index of thin polymer layers,” Appl. Phys. Lett.91(6), 061901 (2007). [CrossRef]
  28. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982). [CrossRef]
  29. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982). [CrossRef]
  30. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev.31(5), 711–716 (1984). [CrossRef]
  31. J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett.12(2), 602–609 (2012). [CrossRef] [PubMed]
  32. J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study,” Appl. Phys. Lett.91(11), 113520 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited