OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 2777–2786

Dynamics of a gain-switched distributed feedback ridge waveguide laser in nanoseconds time scale under very high current injection conditions

A. Klehr, H. Wenzel, O. Brox, S. Schwertfeger, R. Staske, and G. Erbert  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 2777-2786 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1776 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present detailed experimental investigations of the temporal, spectral and spatial behavior of a gain-switched distributed feedback (DFB) laser emitting at a wavelength of 1064 nm. Gain-switching is achieved by injecting nearly rectangular shaped current pulses having a length of 50 ns and a very high amplitude up to 2.5 A. The repetition frequency is 200 kHz. The laser has a ridge waveguide (RW) for lateral waveguiding with a ridge width of 3 µm and a cavity length of 1.5 mm. Time resolved investigations show, depending on the amplitude of the current pulses, that the optical power exhibits different types of oscillatory behavior during the pulses, accompanied by changes in the lateral near field intensity profiles and optical spectra. Three different types of instabilities can be distinguished: mode beating with frequencies between 25 GHz and 30 GHz, switching between different lateral intensity profiles with a frequency of 0.4 GHz and self-sustained oscillations with a frequency of 4 GHz. The investigations are of great relevance for the utilization of gain-switched DFB-RW lasers as seed lasers for fiber laser systems and in other applications, which require a high optical power.

© 2013 OSA

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(140.3325) Lasers and laser optics : Laser coupling

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 23, 2012
Revised Manuscript: December 20, 2012
Manuscript Accepted: January 9, 2013
Published: January 29, 2013

A. Klehr, H. Wenzel, O. Brox, S. Schwertfeger, R. Staske, and G. Erbert, "Dynamics of a gain-switched distributed feedback ridge waveguide laser in nanoseconds time scale under very high current injection conditions," Opt. Express 21, 2777-2786 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. K. O`Daniel and M. Achtenhagen, “High-power spectrally-stable DBR semiconductor lasers designed for pulsing in the nanosecond regime,” Proc. SPIE7616, 76160W (2010). [CrossRef]
  2. W. Zeller, M. Kamp, J. Koeth, and L. Worschech, “High power pulsed 976nm DFB laser diodes,” Proc. SPIE7682, 76820T–76820T-9 (2010). [CrossRef]
  3. E. A. Zibik, A. Bertrand, W. Kaiser, J. Boucart, A. Thies, I. Davies, D. Inder, C. Button, Y. Hernandez, and N. Lichtenstein, “Laser Diodes with Distributed Feedback for Application as Subnanosecond Fiber Laser Seeder,” Proc. SPIE8277, 82771O (2012). [CrossRef]
  4. A. Klehr, H. Wenzel, S. Schwertfeger, O. Brox, A. Liero, Th. Hoffmann, and G. Erbert, “High peak-power nanosecond pulses generated with DFB RW laser,” Electron. Lett.47(18), 1039–1040 (2011). [CrossRef]
  5. H. Wenzel, A. Klehr, S. Schwertfeger, A. Liero, Th. Hoffmann, O. Brox, M. Thomas, G. Erbert, and G. Tränkle, “Compact sources for the generation of high-peak power wavelength stabilized laser pulses in the picoseconds and nanoseconds ranges,” Proc. SPIE8241, 82410V (2012). [CrossRef]
  6. M. O. Ziegler, M. Münkel, T. Burkhard, G. Jennemann, I. Fischer, and W. Elsässer, “Spatiotemporal emission dynamics of ridge waveguide laser diodes: picosecond pulsing and switching,” J. Opt. Soc. Am.16(11), 2015–2022 (1999). [CrossRef]
  7. H. Wenzel, “Green’s function based simulation of the optical spectrum of multisection lasers,” IEEE J. Sel. Top. Quantum Electron.9(3), 865–871 (2003). [CrossRef]
  8. O. Brox, J. Wiedmann, F. Scholz, F. Bugge, J. Fricke, A. Klehr, T. Laurent, P. Ressel, H. Wenzel, G. Erbert, and G. Tränkle, “Integrated 1060nm MOPA pump source for high-power green light emitters in display technology,” Proc. SPIE6909, 69091G (2008). [CrossRef]
  9. A. Liero, A. Klehr, S. Schwertfeger, T. Hoffmann, and W. Heinrich, “Laser driver switching 20 A with 2 ns pulse width using GaN,” IEEE MTT-S Int. Microw. Symp. Dig.2010, 1110–1113 (2010).
  10. C. R. Mirasso, G. H. M. van Tartwijk, E. Hernandez-Garcia, D. Lenstra, S. Lynch, P. Landais, P. Phelan, J. O’Gorman, M. San Miguel, and W. Elsäßer, “Self-Pulsating Semiconductor Lasers: Theory and Experiment,” IEEE J. Quantum Electron.35(5), 764–770 (1999). [CrossRef]
  11. S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond Spectral Dynamics of Gain-Switched DFB Lasers,” IEEE J. Quantum Electron.47(5), 715–722 (2011). [CrossRef]
  12. H. Wenzel, M. Dallmer, and G. Erbert, “Thermal lensing in high-power ridge-waveguide lasers,” Opt. Quantum Electron.40(5-6), 379–384 (2008). [CrossRef]
  13. M. Achtenhagen, A. A. Hardy, and C. S. Harder, “Coherent Kinks in High-Power Ridge Waveguide Laser Diodes,” J. Lightwave Technol.24(5), 2225–2232 (2006). [CrossRef]
  14. J. Ctyroký, V. Kuzmiak, and S. Eyderman, “Waveguide structures with antisymmetric gain/loss profile,” Opt. Express18(21), 21585–21593 (2010). [CrossRef] [PubMed]
  15. H. Wenzel, U. Bandelow, H. J. Wünsche, and J. Rehberg, “Mechanism of fast self-pulsations in two-section DFB laser,” IEEE J. Quantum Electron.32(1), 69–78 (1996). [CrossRef]
  16. K. A. Shore and T. E. Rozzi, “Transverse Switching Due to Hopf Bifurcation in Semiconductor lasers,” IEEE J. Quantum Electron.20(3), 246–255 (1984). [CrossRef]
  17. S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Picosecond pulses with 50W peak power and reduced ASE background from an all-semiconductor MOPA system,” Appl. Phys. B103(3), 603–607 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited