OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 2816–2822

Enhancing entangled-state phase estimation by combining classical and quantum protocols

Heedeuk Shin, Omar S. Magaña-Loaiza, Mehul Malik, Malcolm N. O’Sullivan, and Robert W. Boyd  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 2816-2822 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (889 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Here we describe a laboratory procedure by which we have increased the resolution of a measurement of the position of an optical component by a factor of 16. The factor of 16 arises from a four-fold quantum enhancement through the use of an N = 4 N00N state and a four-fold classical enhancement from a quadruple pass through a prism pair. The possibility of achieving supersensitivity using this method is discussed.

© 2013 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: November 21, 2012
Revised Manuscript: January 9, 2013
Manuscript Accepted: January 9, 2013
Published: January 29, 2013

Heedeuk Shin, Omar S. Magaña-Loaiza, Mehul Malik, Malcolm N. O’Sullivan, and Robert W. Boyd, "Enhancing entangled-state phase estimation by combining classical and quantum protocols," Opt. Express 21, 2816-2822 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics5(4), 222–229 (2011). [CrossRef]
  2. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett.85(13), 2733–2736 (2000). [CrossRef] [PubMed]
  3. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature429(6988), 161–164 (2004). [CrossRef] [PubMed]
  4. P. Walther, J. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, “de Broglie wavelength of a nonlocal four-photon state,” Nature429(6988), 158–161 (2004). [CrossRef] [PubMed]
  5. T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science316(5825), 726–729 (2007). [CrossRef] [PubMed]
  6. D. V. Korobkin and E. Yablonovitch, “Two-fold spatial resolution enhancement by two-photon exposure of photographic film,” Opt. Eng.41, 1729–1732 (2002). [CrossRef]
  7. N. Thomas-Peter, B. Smith, A. Datta, L. Zhang, U. Dorner, and I. Walmsley, “Real-world quantum sensors: evaluating resources for precision measurement,” Phys. Rev. Lett.107(11), 0113603 (2011). [CrossRef]
  8. G. M. Gehring, H. Shin, R. Boyd, C. M. Kim, and B. S. Ham, “Tunable optical time delay of quantum signals using a prism pair,” Opt. Express18(18), 19156–19162 (2010). [CrossRef] [PubMed]
  9. B. C. Barish and R. Weiss, “LIGO and the detection of gravitational waves,” Phys. Today52(10), 44–50 (1999). [CrossRef]
  10. F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica9(7), 686–698 (1942). [CrossRef]
  11. F. Marquardt and S. Girvin, “Optomechanics,” Physics2, 40 (2009). [CrossRef]
  12. B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature450(7168), 393–396 (2007). [CrossRef] [PubMed]
  13. S. Braunstein and C. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett.72(22), 3439–3443 (1994). [CrossRef] [PubMed]
  14. R. A. Fisher, “Theory of statistical estimation,” Mathematical Proceedings of the Cambridge Philosophical Society22(05), 700–725 (1925). [CrossRef]
  15. K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett.98(22), 0223601 (2007). [CrossRef]
  16. R. Campos, B. Saleh, and M. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics,” Phys. Rev. A40(3), 1371–1384 (1989). [CrossRef] [PubMed]
  17. H. Shin, K. W. C. Chan, H. J. Chang, and R. W. Boyd, “Quantum spatial superresolution by optical centroid measurements,” Phys. Rev. Lett.107, 083603 (2011). [CrossRef] [PubMed]
  18. O. Steuernagel, “de Broglie wavelength reduction for a multiphoton wave packet,” Phys. Rev. A65, 033820 (2002). [CrossRef]
  19. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am.32(5), 285–288 (1942). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited