OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 2942–2952

Efficient and broadband quarter-wave plates by gap-plasmon resonators

Anders Pors and Sergey I. Bozhevolnyi  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 2942-2952 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2428 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate numerically that metal-insulator-metal (MIM) configurations in which the top metal layer consists of a periodic arrangement of nanobricks, thus facilitating gap-surface plasmon resonances, can be designed to function as efficient and broadband quarter-wave plates in reflection by a proper choice of geometrical parameters. Using gold as the metal, we demonstrate quarter-wave plate behavior at λ ≃ 800 nm with an operation bandwidth of 160 nm, conversion efficiency of 82%, and angle of linear polarization fixed throughout the entire bandwidth. This work also includes a detailed analytical and numerical study of the optical properties and underlying physics of structured MIM configurations.

© 2013 OSA

OCIS Codes
(260.3910) Physical optics : Metal optics
(260.5430) Physical optics : Polarization
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: October 10, 2012
Revised Manuscript: January 9, 2013
Manuscript Accepted: January 23, 2013
Published: January 31, 2013

Anders Pors and Sergey I. Bozhevolnyi, "Efficient and broadband quarter-wave plates by gap-plasmon resonators," Opt. Express 21, 2942-2952 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice Hall, 1993), 2nd ed.
  2. L. H. Cescato, E. Gluch, and N. Streibl, “Holographic quarterwave plates,” Appl. Opt.29, 3286–3290 (1990). [CrossRef] [PubMed]
  3. F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng, and A. Scherer, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett.20, 2457–2459 (1995). [CrossRef] [PubMed]
  4. G. P. Nordin and P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express5, 163–168 (1999). [CrossRef] [PubMed]
  5. W. Yu, A. Mizutani, H. Kikuta, and T. Konishi, “Reduced wavelength-dependent quarter-wave plate fabricated by a multilayered subwavelength structure,” Appl. Opt.45, 2601–2606 (2006). [CrossRef] [PubMed]
  6. S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett.95, 013105 (2009). [CrossRef]
  7. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101, 043902 (2008). [CrossRef] [PubMed]
  8. J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80, 023807 (2009). [CrossRef]
  9. Y. Zhao and A. Alú, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84, 205428 (2011). [CrossRef]
  10. E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett.36, 2498–2500 (2011). [CrossRef] [PubMed]
  11. P. F. Chimento, N. V. Kuzmin, J. Bosman, P. F. A. Alkemade, G. W. Hooft, and E. R. Eliel, “A subwavelength slit as a quarter-wave retarder,” Opt. Express19, 24219–24227 (2011). [CrossRef] [PubMed]
  12. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37, 1820–1822 (2012). [CrossRef] [PubMed]
  13. F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101, 023101 (2012). [CrossRef]
  14. F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B84, 035107 (2011). [CrossRef]
  15. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarization by anisotropic metamaterials,” Phys. Rev. Lett.99, 063908 (2007). [CrossRef] [PubMed]
  16. A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett.10, 4571–4577 (2010). [CrossRef] [PubMed]
  17. S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys.13, 023034 (2011). [CrossRef]
  18. A. Pors, M. G. Nielsen, G. Della Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett.36, 1626–1628 (2011). [CrossRef] [PubMed]
  19. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Greens function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B77, 245310 (2008). [CrossRef]
  20. M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express19, 19310–19322 (2011). [CrossRef] [PubMed]
  21. D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012). [CrossRef]
  22. D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, “Metamaterial polarization converter analysis: limits of performance,” (2012). ArXiv:1209.0095v1.
  23. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010). [CrossRef] [PubMed]
  24. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic matematerial,” Appl. Phys. Lett.96, 251104 (2010). [CrossRef]
  25. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun.2, 1–7 (2011). [CrossRef]
  26. J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestreb, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys Lett.100, 113305 (2012). [CrossRef]
  27. P. Bouchon, C. Koechlin, F. Pardo, R. Haider, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett.37, 1038–1040 (2012). [CrossRef] [PubMed]
  28. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express20, 13311–13319 (2012). [CrossRef] [PubMed]
  29. I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett.92, 233102 (2008). [CrossRef]
  30. W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36, 927–929 (2011). [CrossRef] [PubMed]
  31. E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J. Phys. Chem.91, 634–643 (1987). [CrossRef]
  32. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, Weinheim, 1983).
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  34. Y. Zhao, N. Engheta, and A. Alú, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials5, 90–96 (2011). [CrossRef]
  35. T. Søndergaard and S. I. Bozhevolnyi, “Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions,” Phys. Rev. B67, 165405 (2003). [CrossRef]
  36. G. Della Valle, T. Søndergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express16, 6867–6876 (2008). [CrossRef] [PubMed]
  37. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett.34, 244–246 (2009). [CrossRef] [PubMed]
  38. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express15, 10869–10877 (2007). [CrossRef] [PubMed]
  39. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett.30, 3198–3200 (2005). [CrossRef] [PubMed]
  40. W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express15, 3333–3341 (2007). [CrossRef] [PubMed]
  41. D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47, 2059–2074 (1999). [CrossRef]
  42. J. M. Hao, L. Zhou, and C. T. Chan, “An effective-medium model for high-impedance surfaces,” Appl. Phys. A87, 281–284 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited