OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 2971–2977

Multiplexing of six micro-displacement suspended-core Sagnac interferometer sensors with a Raman-Erbium fiber laser

Mikel Bravo, Montserrat Fernández-Vallejo, Mikel Echapare, Manuel López-Amo, J. Kobelke, and K. Schuster  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 2971-2977 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (863 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work experimentally demonstrates a long-range optical fiber sensing network for the multiplexing of fiber sensors based on photonic crystal fibers. Specifically, six photonic crystal fiber sensors which are based on a Sagnac interferometer that includes a suspended-core fiber have been used. These sensors offer a high sensitivity for micro-displacement measurements. The fiber sensor network presents a ladder structure and its operation mode is based on a fiber ring laser which combines Raman and Erbium doped fiber amplification. Thus, we show the first demonstration of photonic crystal fiber sensors for remote measurement applications up to 75 km.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(290.5830) Scattering : Scattering, Brillouin
(290.5860) Scattering : Scattering, Raman
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: November 13, 2012
Revised Manuscript: January 4, 2013
Manuscript Accepted: January 6, 2013
Published: January 31, 2013

Mikel Bravo, Montserrat Fernández-Vallejo, Mikel Echapare, Manuel López-Amo, J. Kobelke, and K. Schuster, "Multiplexing of six micro-displacement suspended-core Sagnac interferometer sensors with a Raman-Erbium fiber laser," Opt. Express 21, 2971-2977 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Li, D. Li, and G. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Structures26(11), 1647–1657 (2004). [CrossRef]
  2. M. Fernandez-Vallejo and M. Lopez-Amo, “Optical fiber networks for remote fiber optic sensors,” Sensors (Basel)12(4), 3929–3951 (2012). [CrossRef] [PubMed]
  3. S. Diaz, S. Abad, and M. Lopez-Amo, “Fiber-optic sensor active networking with distributed erbium-doped fiber and Raman amplification,” Laser Photon. Rev.2(6), 480–497 (2008). [CrossRef]
  4. E. Achaerandio, S. Jarabo, S. Abad, and M. López-Amo, “New WDM amplified network for optical sensor multiplexing,” IEEE Photon. Technol. Lett.11(12), 1644–1646 (1999). [CrossRef]
  5. M. Fernandez-Vallejo, S. Díaz, R. A. Perez-Herrera, D. Passaro, S. Selleri, M. A. Quintela, J. M. L. Higuera, and M. Lopez-Amo, “Resilient long-distance sensor system using a multiwavelength Raman laser,” Meas. Sci. Technol.21 094017 (2010).
  6. J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett.21(13), 569–570 (1985). [CrossRef]
  7. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett.15(18), 1038–1040 (1990). [CrossRef] [PubMed]
  8. Y. Tanaka, M. Kinoshita, A. Takahashi, and T. Kurokawa, “A wide-area sensor network based on fiber optic power supply,” Jpn. J. Appl. Phys.50(11), 112501 (2011). [CrossRef]
  9. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997). [CrossRef]
  10. J. M. Lopez-Higuera, ed., Handbook of Optical Fiber Sensing Technology (Wiley, New York2002), Chap. 1.
  11. A. M. R. Pinto and M. Lopez-Amo, “Photonic crystal fibers for sensing applications,” J. Sens.2012598178, (2012).
  12. D. Barrera, J. Villatoro, V. P. Finazzi, G. A. Cárdenas-Sevilla, V. P. Minkovich, S. Sales, and V. Pruneri, “Low-loss photonic crystal fiber interferometers for sensor networks,” J. Lightwave Technol.28(24), 3542–3547 (2010). [CrossRef]
  13. G. A. Cárdenas-Sevilla, V. Finazzi, J. Villatoro, and V. Pruneri, “Photonic crystal fiber sensor array based on modes overlapping,” Opt. Express19(8), 7596–7602 (2011). [CrossRef] [PubMed]
  14. H. Y. Fu, A. C. L. Wong, P. A. Childs, H. Y. Tam, Y. B. Liao, C. Lu, and P. K. A. Wai, “Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors,” Opt. Express17(21), 18501–18512 (2009). [CrossRef] [PubMed]
  15. Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Pérot interferometric strain sensor system,” IEEE Photon. Technol. Lett.20(15), 1329–1331 (2008). [CrossRef]
  16. M. Bravo, A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “High precision micro-displacement fiber sensor through a suspended-core Sagnac interferometer,” Opt. Lett.37(2), 202–204 (2012). [CrossRef] [PubMed]
  17. A. M. R. Pinto, M. Bravo, M. Fernandez-Vallejo, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Suspended-core fiber Sagnac combined dual-random mirror Raman fiber laser,” Opt. Express19(12), 11906–11915 (2011). [CrossRef] [PubMed]
  18. M. Fernandez-Vallejo, S. Rota-Rodrigo, and M. Lopez-Amo, “Remote (250 km) fiber Bragg grating multiplexing system,” Sensors (Basel)11(12), 8711–8720 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited