OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3021–3030

Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure

Zhengqi Liu, Peng Zhan, Jing Chen, Chaojun Tang, Zhendong Yan, Zhuo Chen, and Zhenlin Wang  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3021-3030 (2013)
http://dx.doi.org/10.1364/OE.21.003021


View Full Text Article

Enhanced HTML    Acrobat PDF (1932 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High performance light absorber with a broad bandwidth is particularly desirable for near-infrared photodetection and optical interconnects. Here we demonstrate a dual broadband perfect absorber in the near-infrared regime, which is based on a hybrid plasmonic-photonic microstructure. Such a microstructure is fabricated by self-assembling a monolayer colloidal crystal on an optically opaque metal film followed by depositing a thin metallic half-shell on the top of the colloidal particles. Both experimental and numerical simulation results show that the simply designed absorbers have dual broadband with absorption exceeding 90% in the near-infrared region with the absorption bands being scalable by tuning the size of the colloidal particles. Moreover, the absorption efficiency shows an extremely slight dispersion for the incident angles up to 50 degrees, benefit from the high symmetry as well as the highly modulated plasmonic microstructures that lead to a weak polarization dependence of these two absorption bands. The relative ease of growing high-quality colloidal crystals and the low cost of fabricating such plasmonic-photonic microstructures with high reproducibility could promise applicability of the light absorber in the field of photodetectors, thermal emitters and photovoltaics.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(300.1030) Spectroscopy : Absorption
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 3, 2012
Revised Manuscript: January 20, 2013
Manuscript Accepted: January 28, 2013
Published: January 31, 2013

Citation
Zhengqi Liu, Peng Zhan, Jing Chen, Chaojun Tang, Zhendong Yan, Zhuo Chen, and Zhenlin Wang, "Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure," Opt. Express 21, 3021-3030 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3021


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Watts, X. L. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. (Deerfield Beach Fla.)24(23), OP98–OP120, OP181 (2012). [CrossRef] [PubMed]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  3. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011). [CrossRef] [PubMed]
  4. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  6. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun.2, 517 (2011). [CrossRef] [PubMed]
  7. K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express19(15), 14260–14267 (2011). [CrossRef] [PubMed]
  8. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express20(9), 10376–10381 (2012). [CrossRef] [PubMed]
  9. S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, “Polarization insensitive and ominidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011). [CrossRef]
  10. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37(2), 154–156 (2012). [CrossRef] [PubMed]
  11. J. Hendrickson, J. P. Guo, B. Y. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett.37(3), 371–373 (2012). [CrossRef] [PubMed]
  12. J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express20(14), 14871–14878 (2012). [CrossRef] [PubMed]
  13. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett.37(6), 1038–1040 (2012). [CrossRef] [PubMed]
  14. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett.36(17), 3476–3478 (2011). [CrossRef] [PubMed]
  15. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010). [CrossRef]
  16. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012). [CrossRef] [PubMed]
  17. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108(4), 047401 (2012). [CrossRef] [PubMed]
  18. X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011). [CrossRef] [PubMed]
  19. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012). [CrossRef] [PubMed]
  20. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett.37(11), 2133–2135 (2012). [CrossRef] [PubMed]
  21. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Ominidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008). [CrossRef]
  22. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. (Deerfield Beach Fla.)23(10), 1272–1276 (2011). [CrossRef] [PubMed]
  23. B. Ding, M. Bardosova, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Broadband omnidirectional diversion of light in hybrid plasmonic-photonic heterocrystals,” Adv. Funct. Mater.21(21), 4182–4192 (2011). [CrossRef]
  24. M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, and X. Luo, “Truncated spherical voids for nearly omnidirectional optical absorption,” Opt. Express19(21), 20642–20649 (2011). [CrossRef] [PubMed]
  25. Y. Yao, J. Yao, V. K. Narasimhan, Z. C. Ruan, C. Xie, S. H. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun.3, 664 (2012). [CrossRef] [PubMed]
  26. A. I. Maaroof, M. B. Cortie, N. Harris, and L. Wieczorek, “Mie and Bragg plasmons in subwavelength silver semi-shells,” Small4(12), 2292–2299 (2008). [CrossRef] [PubMed]
  27. C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B80(16), 165401 (2009). [CrossRef]
  28. Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express19(24), 23889–23900 (2011). [CrossRef] [PubMed]
  29. X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater.20(12), 1910–1916 (2010). [CrossRef]
  30. S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.)23(22-23), 2515–2533 (2011). [CrossRef] [PubMed]
  31. P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.)18(12), 1612–1616 (2006). [CrossRef]
  32. J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Fabrication and wetting properties of metallic half-shells with submicron diameters,” Nano Lett.2(8), 891–894 (2002). [CrossRef]
  33. Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express18(4), 3546–3555 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited