OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3043–3054

Plasmonic superconducting nanowire single photon detector

Amin Eftekharian, Haig Atikian, and A. Hamed Majedi  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3043-3054 (2013)
http://dx.doi.org/10.1364/OE.21.003043


View Full Text Article

Enhanced HTML    Acrobat PDF (779 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical analysis to enhance the quantum efficiency of a meander-line superconducting single photon detector without increasing the length or thickness of the active element is proposed. The general idea is to utilize the plasmonic nature of a superconducting layer to increase the surface absorption of the input optical signal. To satisfy both optical guiding and photon detection considerations of the design, a coefficient is introduced as a measure to maintain the device sensitivity while crossing over from the current crowding to vortex-based detection mechanisms.

© 2013 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(040.5570) Detectors : Quantum detectors
(270.5570) Quantum optics : Quantum detectors

ToC Category:
Detectors

History
Original Manuscript: December 6, 2012
Revised Manuscript: January 22, 2013
Manuscript Accepted: January 23, 2013
Published: January 31, 2013

Citation
Amin Eftekharian, Haig Atikian, and A. Hamed Majedi, "Plasmonic superconducting nanowire single photon detector," Opt. Express 21, 3043-3054 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3043


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. L. O’Brien, A. Furusawa, and J. V. kovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009). [CrossRef]
  2. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006). [CrossRef]
  3. M. Thompson, A. Politi, J. Matthews, and J. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits Devices Syst.5, 94–102 (2011). [CrossRef]
  4. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3, 569–576 (2009). [CrossRef]
  5. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
  6. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009). [CrossRef]
  7. S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett.92, 061116 (2008). [CrossRef]
  8. R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. App. Supercond.13, 1151–1157 (2009). [CrossRef]
  9. L. Zhang, L. Kang, J. Chen, Y. Zhong, Q. Zhao, T. Jia, C. Cao, B. Jin, W. Xu, G. Sun, and P. Wu, “Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires,” Appl. Phys. B102, 867–871 (2011). [CrossRef]
  10. A. Hamed Majedi, “Theoretical investigations on THz and optical superconductive surface plasmon interface,” IEEE Trans. App. Supercond.19, 907–910 (2009). [CrossRef]
  11. P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett.7, 1376–1380 (2007). [CrossRef] [PubMed]
  12. C. M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B. Baek, S. Nam, R. H. Hadfield, and J. L. O’Brien, “Operating quantum waveguide circuits with superconducting single-photon detectors,” Appl. Phys. Lett.96, 211101 (2010). [CrossRef]
  13. A. D. Semenov, G. N. Gol’tsman, and A. A. Korneev, “Quantum detection by current carrying superconducting film,” Phys. C Supercond.351, 349–356 (2001). [CrossRef]
  14. A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001). [CrossRef]
  15. A. M. Kadin, M. Leung, A. D. Smith, and J. M. Murduck, “Photofluxonic detection: A new mechanism for infrared detection in superconducting thin films,” Appl. Phys. Lett.57, 2847–2849 (1990). [CrossRef]
  16. H. Bartolf, A. Engel, A. Schilling, K. Il’in, M. Siegel, H.-W. Hubers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B81, 024502 (2010). [CrossRef]
  17. J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17, 581–585 (2007). [CrossRef]
  18. A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys.108, 084507 (2010). [CrossRef]
  19. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: Reflection pole method and wavevector density method,” J. Lightwave Technol.17, 929–941 (1999). [CrossRef]
  20. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007). [CrossRef]
  21. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61, 10484–10503 (2000). [CrossRef]
  22. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B63, 125417 (2001). [CrossRef]
  23. J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express14, 12409–12418 (2006). [CrossRef] [PubMed]
  24. V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16, 10750–10761 (2008). [CrossRef] [PubMed]
  25. N. E. Glass and D. Rogovin, “Transient electrodynamic response of thin-film superconductors to laser radiation,” Phys. Rev. B39, 11327–11344 (1989). [CrossRef]
  26. R. Romestain, B. Delaet, P. Renaud-Goud, I. Wang, C. Jorel, J.-C. Villegier, and J.-P. Poizat, “Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting,” New J. Phys.6, 129–144 (2004). [CrossRef]
  27. A. M. Kadin, M. Leung, and A. D. Smith, “Photon-assisted vortex depairing in two-dimensional superconductors,” Phys. Rev. Lett.65, 3193–3196 (1990). [CrossRef] [PubMed]
  28. A. M. Kadin and M. W. Johnson, “Nonequilibrium photon-induced hotspot: A new mechanism for photodetection in ultrathin metallic films,” Appl. Phys. Lett.69, 3938–3940 (1996). [CrossRef]
  29. K. K. Likharev, “Superconducting weak links,” Rev. Mod. Phys.51, 101–159 (1979). [CrossRef]
  30. H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett.100, 182602 (2012). [CrossRef]
  31. D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” Phys. Rev. B86, 144504 (2012). [CrossRef]
  32. J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B84, 174510 (2011). [CrossRef]
  33. A. N. Zotova and D. Y. Vodolazov, “Photon detection by current-carrying superconducting film: A time-dependent Ginzburg-Landau approach,” Phys. Rev. B85, 024509 (2012). [CrossRef]
  34. M. Hofherr, D. Rall, K. S. Ilin, A. Semenov, N. Gippius, H.-W. Hübers, and M. Siegel, “Superconducting nanowire single-photon detectors: Quantum efficiency vs. film thickness,” J. Phys.234, 012017 (2010).
  35. M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express19, 3592–3598 (2011). [CrossRef] [PubMed]
  36. M. Kupriyanov and V. Lukichov, “Temperature dependence of the pair-breaking current density in superconductors,” Fiz. Nizk. Temp.6, 445–453 (1980).
  37. T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki, and Z. Wang, “Origin of intrinsic dark count in superconducting nanowire single-photon detectors,” Appl. Phys. Lett.99, 161105 (2011). [CrossRef]
  38. L. N. Bulaevskii, M. J. Graf, and V. G. Kogan, “Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors,” Phys. Rev. B85, 014505 (2012). [CrossRef]
  39. L. N. Bulaevskii, M. J. Graf, C. D. Batista, and V. G. Kogan, “Vortex-induced dissipation in narrow current-biased thin-film superconducting strips,” Phys. Rev. B83, 144526 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited