OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3067–3072

Optical Cherenkov radiation in an As2S3 slot waveguide with four zero-dispersion wavelengths

Shaofei Wang, Jungao Hu, Hairun Guo, and Xianglong Zeng  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3067-3072 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2309 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an approach for an efficient generation of optical Cherenkov radiation (OCR) in the near-infrared by tailoring the waveguide dispersion for a zero group-velocity mismatching between the radiation and the pump soliton. Based on an As2S3 slot waveguide with subwavelength dimensions, dispersion profiles with four zero dispersion wavelengths are found to produce a phase-matching nonlinear process leading to a broadband resonant radiation. The broadband OCR investigated in the chalcogenide waveguide may find applications in on-chip wavelength conversion and near-infrared pulse generation.

© 2013 OSA

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

Original Manuscript: December 12, 2012
Revised Manuscript: January 23, 2013
Manuscript Accepted: January 23, 2013
Published: January 31, 2013

Shaofei Wang, Jungao Hu, Hairun Guo, and Xianglong Zeng, "Optical Cherenkov radiation in an As2S3 slot waveguide with four zero-dispersion wavelengths," Opt. Express 21, 3067-3072 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Ranka, R. Windeler, and A. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25, 25–27 (2000). [CrossRef]
  2. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express12, 124–135 (2004). [CrossRef] [PubMed]
  3. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express14, 11997–12007 (2006). [CrossRef] [PubMed]
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006). [CrossRef]
  5. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science301, 1705–1708 (2003). [CrossRef] [PubMed]
  6. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express17, 9858–9872 (2009). [CrossRef] [PubMed]
  7. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995). [CrossRef] [PubMed]
  8. S. Roy, D. Ghosh, S. K. Bhadra, and G. P. Agrawal, “Role of dispersion profile in controlling emission of dispersive waves by solitons in supercontinuum generation,” Opt. Commun.283, 3081–3088 (2010). [CrossRef]
  9. M. R. E. Lamont, B. Luther-Davies, D. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express16, 14938–14944 (2008). [CrossRef] [PubMed]
  10. C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt.48, 5467–5474 (2009). [CrossRef] [PubMed]
  11. J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96, 6931–6933 (2004). [CrossRef]
  12. I. W. Hsieh, X. G. Chen, X. P. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. N. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express15, 15242–15249 (2007). [CrossRef] [PubMed]
  13. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express20, 1685–1690 (2012). [CrossRef] [PubMed]
  14. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29, 1209–1211 (2004). [CrossRef] [PubMed]
  15. S. Mas, J. Caraquitena, J. V. Galán, P. Sanchis, and J. Martí, “Tailoring the dispersion behavior of silicon nanophotonic slot waveguides,” Opt. Express18, 20839–20844 (2010). [CrossRef] [PubMed]
  16. M. Zhu, H. J. Liu, X. F. Li, N. Huang, Q. B. Sun, J. Wen, and Z. L. Wang, “Ultrabroadband flat dispersion tailoring of dualslot silicon waveguides,” Opt. Express20, 15899–15907 (2012). [CrossRef] [PubMed]
  17. V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express15, 9205–9221 (2007). [CrossRef]
  18. B. Kibler, P.-A. Lacourt, F. Courvoisier, and J. M. Dudley, “Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect,” Electron. Lett.43, 967–968 (2007). [CrossRef]
  19. S. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A83, 023808 (2011). [CrossRef]
  20. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express15, 14414–14421 (2007). [CrossRef] [PubMed]
  21. X. Zeng, S. Ashihara, X. Chen, T. Shimura, and K. Kuroda, “Two-color pulse compression in aperiodically poled lithium niobate,” Opt. Commun.281, 4499–4503 (2008). [CrossRef]
  22. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett.27, 1046–1048 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited