OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3114–3124

Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure

Leimeng Zhuang, Willem Beeker, Arne Leinse, René Heideman, Paulus van Dijk, and Chris Roeloffzen  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3114-3124 (2013)
http://dx.doi.org/10.1364/OE.21.003114


View Full Text Article

Enhanced HTML    Acrobat PDF (2049 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For microwave photonic signal processing, this structure is able to serve as a wideband 2 × 2 RF coupler with reconfigurable complex coefficients, and therefore can be used as a polarization network for wideband antennas. Such a device can equip the antennas with not only the polarization rotation capability for linear-polarization signals but also the capability to operate with and tune between two opposite circular polarizations. Operating together with a particular modulation scheme, the device is also able to serve for simultaneous feeding of dual-polarization signals. These photonic-implemented RF functionalities can be applied to wideband antenna systems to perform agile polarization manipulations and tracking operations. An example of such a interleaver has been realized in TriPleX waveguide technology, which was designed with a free spectral range of 20 GHz and a mask footprint of smaller than 1 × 1 cm. Using the realized device, the reconfigurable complex coefficients of the polarization network were demonstrated with a continuous bandwidth from 2 to 8 GHz and an in-band phase ripple of smaller than 5 degree. The waveguide structure of the device allows it to be further integrated with other functional building blocks of a photonic integrated circuit to realize on-chip, complex microwave photonic processors. Of particular interest, it can be included in an optical beamformer for phased array antennas, so that simultaneous wideband beam and polarization trackings can be achieved photonically. To our knowledge, this is the first-time on-chip demonstration of an integrated microwave photonic polarization network for dual linear-polarized antennas.

© 2013 OSA

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(130.3120) Integrated optics : Integrated optics devices
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Integrated Optics

History
Original Manuscript: December 4, 2012
Revised Manuscript: January 23, 2013
Manuscript Accepted: January 23, 2013
Published: February 1, 2013

Citation
Leimeng Zhuang, Willem Beeker, Arne Leinse, René Heideman, Paulus van Dijk, and Chris Roeloffzen, "Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure," Opt. Express 21, 3114-3124 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3114


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007). [CrossRef]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009). [CrossRef]
  3. I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthroughs in microwave photonics,” IEEE Photonics J.3(2), 311–315 (2011).
  4. J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: Harnessing slow light,” Nat. Photonics5(12), 731–733 (2011). [CrossRef]
  5. D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev., DOI:10.1002/Ipor.201200032 (2013). [CrossRef]
  6. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.3(9), (2012).
  7. M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19(22), 21475–21484 (2011). [CrossRef] [PubMed]
  8. N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express18(24), 24648–24653 (2010). [CrossRef] [PubMed]
  9. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010). [CrossRef]
  10. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, D. A. I. Leimeng Zhuang, M. J. Marpaung, M. Bentum, J. Burla, P. Verpoorte, A. Jorna, Hulzinga, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part I: design and performance analysis,” J. Lightwave Technol.28(1), 3–18 (2010). [CrossRef]
  11. L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol.28(1), 19–31 (2010).
  12. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(29) (2010).
  13. F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express16(20), 15880–15886 (2008). [CrossRef] [PubMed]
  14. D. A. I. Marpaung, C. G. H. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18(26), 27359–27370 (2010). [CrossRef] [PubMed]
  15. D. A. I. Marpaung, L. Chevalier, M. Burla, and C. G. H. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express19(25), 24838–24848 (2011). [CrossRef] [PubMed]
  16. L. Zhuang, M. R. Khan, W. P. Beeker, A. Leinse, R. G. Heideman, and C. G. H. Roeloffzen, “Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter,” Opt. Express20(24), 26499–26510 (2012). [CrossRef] [PubMed]
  17. J. F. White, High Frequency Techniques: An Introduction to RF and Microwave Engineering (Wiley, 2004).
  18. R. E. Collin, Antennas and Radiowave Propagation (McGraw-Hill, 1985).
  19. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (Wiley, 1999).
  20. C. J. Kaalund and G. Peng, “Pole-zero diagram approach to the design of ring resonator-based filters for photonic applications,” J. Lightwave Technol.22(6), 1548–1559 (2004). [CrossRef]
  21. Z. Wang, S. Chang, C. Ni, and Y. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photonics Lett.19(14), 1072–1075 (2007).
  22. R. G. Heideman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron.18(5), 1583–1596 (2012). [CrossRef]
  23. L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express19(23), 23162–23170 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited