OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3213–3224

Textile integrated sensors and actuators for near-infrared spectroscopy

Christoph Zysset, Nassim Nasseri, Lars Büthe, Niko Münzenrieder, Thomas Kinkeldei, Luisa Petti, Stefan Kleiser, Giovanni A. Salvatore, Martin Wolf, and Gerhard Tröster  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3213-3224 (2013)
http://dx.doi.org/10.1364/OE.21.003213


View Full Text Article

Enhanced HTML    Acrobat PDF (3868 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Being the closest layer to our body, textiles provide an ideal platform for integrating sensors and actuators to monitor physiological signals. We used a woven textile to integrate photodiodes and light emitting diodes. LEDs and photodiodes enable near-infrared spectroscopy (NIRS) systems to monitor arterial oxygen saturation and oxygenated and deoxygenated hemoglobin in human tissue. Photodiodes and LEDs are mounted on flexible plastic strips with widths of 4 mm and 2 mm, respectively. The strips are woven during the textile fabrication process in weft direction and interconnected with copper wires with a diameter of 71 μm in warp direction. The sensor textile is applied to measure the pulse waves in the fingertip and the changes in oxygenated and deoxygenated hemoglobin during a venous occlusion at the calf. The system has a signal-to-noise ratio of more than 70 dB and a system drift of 0.37% ± 0.48%. The presented work demonstrates the feasibility of integrating photodiodes and LEDs into woven textiles, a step towards wearable health monitoring devices.

© 2013 OSA

OCIS Codes
(170.1460) Medical optics and biotechnology : Blood gas monitoring
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: November 27, 2012
Revised Manuscript: January 23, 2013
Manuscript Accepted: January 28, 2013
Published: February 1, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Christoph Zysset, Nassim Nasseri, Lars Büthe, Niko Münzenrieder, Thomas Kinkeldei, Luisa Petti, Stefan Kleiser, Giovanni A. Salvatore, Martin Wolf, and Gerhard Tröster, "Textile integrated sensors and actuators for near-infrared spectroscopy," Opt. Express 21, 3213-3224 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3213


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Suh, K. Carroll, and N. Cassill, “Critical Review on Smart Clothing Product Development,” J. Text. .Apparel Technol. Manage.6, 1–18 (2010).
  2. H. Harms, O. Amft, G. Tröster, and D. Roggen, “Smash: A distributed sensing and processing garment for the classification of upper body postures,” in Proceedings of the ICST 3rd Int. Conf. on Body Area Networks, (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, Brussels, 2008), 22:1–22:8.
  3. L. van Langenhove and C. Hertleer, “Smart clothing: a new life,” Int. J. Clothing Sci. Technol.16(1/2), 63–72 (2004). [CrossRef]
  4. J. W. Zheng, Z. B. Zhang, T. H. Wu, and Y. Zhang, “A wearable mobihealth care system supporting real-time diagnosis and alarm,” Med. Biol. Eng. Comput.45(9), 877–885 (2007). [CrossRef] [PubMed]
  5. C. Mattmann, O. Amft, H. Harms, G. Tröster, and F. Clemens, “Recognizing upper body postures using textile strain sensors,” in Proceedings of the 11th International Symposium on Wearable Computers, (Institute of Electrical and Electronics Engineers, New York, 2007), 29–36.
  6. S. Park, K. Mackenzie, and S. Jayaraman, “The wearable motherboard: A framework for personalized mobile information processing (PMIP),” in Proceedings of the 39th annual Design Automation Conf. (Association for Computing Machinery, New York, 2002), 174.
  7. I. Locher and G. Tröster, “Fundamental building blocks for circuits on textiles,” IEEE Trans. Adv. Packag.30(3), 541–550 (2007). [CrossRef]
  8. T. Martin, M. Jones, J. Chong, M. Quirk, K. Baumann, and L. Passauer, “Design and implementation of an electronic textile jumpsuit” in Proceedings of the 13th International Symposium on Wearable Computers, (Institute of Electrical and Electronics Engineers, New York, 2009), 157–158.
  9. I. Locher and G. Tröster, “Screen-printed textile transmission lines,” Text. Res. J.77(11), 837–842 (2007). [CrossRef]
  10. T. Linz, L. Gourmelon, and G. Langereis, “Contacless EMG sensors embroidered onto textile,” in Proceedings of the 4th Int. Workshop on Wearable and Implantable Body Sensor Networks, (Springer, 2007), 29–34.
  11. Y. Kim, H. Kim, and H. Yoo, “Electrical characterization of screen-printed circuits on the fabric,” IEEE Trans. Adv. Packag.33, 196–205 (2010).
  12. C. Zysset, K. Cherenack, T. Kinkeldei, and G. Tröster, “Weaving integrated circuits into textiles,” in Proceedings of the 14th International Symposium on Wearable Computers, (Institute of Electrical and Electronics Engineers, New York, 2010), 1–8.
  13. C. Zysset, T. Kinkeldei, N. Münzenrieder, K. Cherenack, and G. Tröster, “Integration Method for Electronics in Woven Textiles,” IEEE Trans Compon. Packag. Manuf. Technol.2(7), 1107–1117 (2012). [CrossRef]
  14. T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philos. Trans. R. Soc. London, Ser. A369, 4591–4604 (2011). [CrossRef]
  15. D. Haensse, P. Szabo, D. Brown, J. C. Fauchère, P. Niederer, H. U. Bucher, and M. Wolf, “A new multichannel near infrared spectrophotometry system for functional studies of the brain in adults and neonates,” Opt. Express13(12), 4525–4538 (2005). [CrossRef] [PubMed]
  16. D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994). [PubMed]
  17. A. D. Edwards, C. Richardson, P. van der Zee, C. Elwell, J. S. Wyatt, M. Cope, D. T. Delpy, and E. O. Reynolds, “Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy,” J. Appl. Physiol.75(4), 1884–1889 (1993). [PubMed]
  18. M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002). [CrossRef] [PubMed]
  19. J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth.103(Suppl 1), i3–i13 (2009). [CrossRef] [PubMed]
  20. K. K. Tremper and S. J. Barker, “Pulse oximetry,” Anesthesiology70(1), 98–108 (1989). [CrossRef] [PubMed]
  21. H. Owen-Reece, M. Smith, C. E. Elwell, and J. C. Goldstone, “Near infrared spectroscopy,” Br. J. Anaesth.82(3), 418–426 (1999). [CrossRef] [PubMed]
  22. M. Rothmaier, B. Selm, S. Spichtig, D. Haensse, and M. Wolf, “Photonic textiles for pulse oximetry,” Opt. Express16(17), 12973–12986 (2008). [CrossRef] [PubMed]
  23. A. Afaq, P. S. Montgomery, K. J. Scott, S. M. Blevins, T. L. Whitsett, and A. W. Gardner, “The effect of current cigarette smoking on calf muscle hemoglobin oxygen saturation in patients with intermittent claudication,” Vasc. Med.12, 167–173 (2007). [CrossRef] [PubMed]
  24. R. Boushel and C. A. Piantadosi, “Near-infrared spectroscopy for monitoring muscle oxygenation,” Acta Physiol. Scand.168(4), 615–622 (2000). [CrossRef] [PubMed]
  25. A. Jubran, “Pulse oximetry,” Crit. Care3(2), R11–R17 (1999). [CrossRef] [PubMed]
  26. S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010). [CrossRef] [PubMed]
  27. M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol.29(4), 463–487 (2004). [CrossRef] [PubMed]
  28. K. K. McCully, L. Landsberg, M. Suarez, M. Hofmann, and J. D. Posner, “Identification of Peripheral Vascular Disease in Elderly Subjects Using Optical Spectroscopy,” J. Gerontol. A Biol. Sci. Med. Sci.52A(3), B159–B165 (1997). [CrossRef] [PubMed]
  29. T. Muehlemann, D. Haensse, and M. Wolf, “Wireless miniaturized in-vivo near infrared imaging,” Opt. Express16(14), 10323–10330 (2008). [CrossRef] [PubMed]
  30. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988). [CrossRef] [PubMed]
  31. J. G. Webster, Design of Pulse Oximeters (IOP Bristol 1997).
  32. R. Boushel, H. Langberg, J. Olesen, J. Gonzales-Alonzo, J. Bülow, and M. Kjaer, “Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease,” Scand. J. Med. Sci. Sports11(4), 213–222 (2001). [CrossRef] [PubMed]
  33. U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, A. Michalos, and E. Gratton, “Regional Differences of Hemodynamics and Oxygenation in the Human Calf Muscle Detected with Near-Infrared Spectrophotometry,” J. Vasc. Interv. Radiol.18(9), 1094–1101 (2007). [CrossRef] [PubMed]
  34. W. Cui, C. Kumar, and B. Chance, “Experimental study of migration depth for the photons measured at sample surface,” in Optics, Electro-Optics, and Laser Applications in Science and Engineering, 180–191 (1991).
  35. T. L. Wang and C. R. Hung, “Role of tissue oxygen saturation monitoring in diagnosing necrotizing fasciitis of the lower limbs,” Ann. Emerg. Med.44(3), 222–228 (2004). [CrossRef] [PubMed]
  36. U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol.510, 225–230 (2003). [CrossRef] [PubMed]
  37. K. J. Kek, R. Kibe, M. Niwayama, N. Kudo, and K. Yamamoto, “Optical imaging instrument for muscle oxygenation based on spatially resolved spectroscopy,” Opt. Express16(22), 18173–18187 (2008). [CrossRef] [PubMed]
  38. J. A. Wahr, K. K. Tremper, S. Samra, and D. T. Delpy, “Near-Infrared Spectroscopy: Theory and Applications,” J. Cardiothorac. Vasc. Anesth.10(3), 406–418 (1996). [CrossRef] [PubMed]
  39. P. van der Zee, S. R. Arridge, M. Cope, and D. T. Delpy, “The Effect of Optode Positioning on Optical Pathlength in Near Infrared Spectroscopy of Brain,” Adv. Exp. Med. Biol.277, 79–84 (1990). [CrossRef] [PubMed]
  40. J. Schumm, S. Axmann, B. Arnrich, and G. Tröster, “Automatic Signal Appraisal for Unobtrusive ECG Measurements,” Int. J. Bioelectromagn.12, 158–164 (2010).
  41. G. Medrano, L. Beckmann, N. Zimmermann, T. Grundmann, T. Gries, and S. Leonhardt, “Bioimpedance Spectroscopy with textile Electrodes for a continuous Monitoring Application,” in 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), 23–28 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited