OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3253–3258

Silica-coated and annealed CdS nanowires with enhanced photoluminescence

Shan Liang, Min Li, Jia-Hong Wang, Xiao-Li Liu, Zhong-Hua Hao, Li Zhou, Xue-Feng Yu, and Qu-Quan Wang  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3253-3258 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (942 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The CdS/SiO2 core/shell nanowires (NWs) with controlled shell thickness were successfully synthesized and subsequently heat-treated at 500 °C. The influences of silica shell coating and annealing processes on their optical properties have been investigated. Compared with original CdS NWs, the annealed CdS/SiO2 NWs exhibited an enhanced band-edge emission with slowed photoluminescence lifetime, while the intensity of defect emission decreased. The results were ascribed to the surface passivation and recrystallization by shell coating and annealing. We believe our finding would help improving the optical properties of semiconductor NWs, and facilitate its applications in various realms, such as nanoscale emitter, sensor, and photoelectric device.

© 2013 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(250.5230) Optoelectronics : Photoluminescence
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:

Original Manuscript: December 14, 2012
Revised Manuscript: January 17, 2013
Manuscript Accepted: January 18, 2013
Published: February 1, 2013

Shan Liang, Min Li, Jia-Hong Wang, Xiao-Li Liu, Zhong-Hua Hao, Li Zhou, Xue-Feng Yu, and Qu-Quan Wang, "Silica-coated and annealed CdS nanowires with enhanced photoluminescence," Opt. Express 21, 3253-3258 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater.5(5), 352–356 (2006). [CrossRef] [PubMed]
  2. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett.4(10), 1981–1985 (2004). [CrossRef]
  3. Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012). [CrossRef]
  4. Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory and experimental design,” Adv. Mater. (Deerfield Beach Fla.)24(11), 1410–1417 (2012). [CrossRef] [PubMed]
  5. Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, “Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3127–3130 (2008). [CrossRef]
  6. J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006). [CrossRef] [PubMed]
  7. C. H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S. W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater.10(9), 669–675 (2011). [CrossRef] [PubMed]
  8. D. Li, J. Zhang, Q. Zhang, and Q. Xiong, “Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: exciton ionization, franz-keldysh, and stark effects,” Nano Lett.12(6), 2993–2999 (2012). [CrossRef] [PubMed]
  9. Q. Zhang, X. Y. Shan, X. Feng, C. X. Wang, Q. Q. Wang, J. F. Jia, and Q. K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11(10), 4270–4274 (2011). [CrossRef] [PubMed]
  10. J. Puthussery, A. Lan, T. H. Kosel, and M. Kuno, “Band-filling of solution-synthesized CdS nanowires,” ACS Nano2(2), 357–367 (2008). [CrossRef] [PubMed]
  11. R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett.5(5), 917–920 (2005). [CrossRef] [PubMed]
  12. A. Pan, S. Wang, R. Liu, C. Li, and B. Zou, “Thermal stability and lasing of CdS nanowires coated by amorphous silica,” Small1(11), 1058–1062 (2005). [CrossRef] [PubMed]
  13. S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kühnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology23(36), 365204 (2012). [CrossRef] [PubMed]
  14. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  15. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003). [CrossRef] [PubMed]
  16. H. Lee, K. Heo, J. Park, Y. Park, S. Noh, K. S. Kim, C. Lee, B. H. Hong, J. Jian, and S. Hong, “Graphene–nanowire hybrid structures for high-performance photoconductive devices,” J. Mater. Chem.22(17), 8372–8376 (2012). [CrossRef]
  17. R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Qin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett.7(11), 3300–3304 (2007). [CrossRef] [PubMed]
  18. T. Dufaux, M. Burghard, and K. Kern, “Efficient charge extraction out of nanoscale Schottky contacts to CdS nanowires,” Nano Lett.12(6), 2705–2709 (2012). [CrossRef] [PubMed]
  19. M. I. Utama, J. Zhang, R. Chen, X. Xu, D. Li, H. Sun, and Q. Xiong, “Synthesis and optical properties of II-VI 1D nanostructures,” Nanoscale4(5), 1422–1435 (2012). [CrossRef] [PubMed]
  20. B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol.7(10), 640–645 (2012). [CrossRef] [PubMed]
  21. Z. X. Yang, W. Zhong, P. Zhang, M. H. Xu, Y. Deng, C. T. Au, and Y. W. Du, “Controllable synthesis, characterization and photoluminescence properties of morphology-tunable CdS nanomaterials generated in thermal evaporation processes,” Appl. Surf. Sci.258(19), 7343–7347 (2012). [CrossRef]
  22. D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, “Preparation and characterization of CdS nanowire arrays by DC electrodeposit in porous anodic aluminum oxide templates,” Chem. Phys. Lett.325(4), 340–344 (2000). [CrossRef]
  23. H. Gai, Y. Wu, L. Wu, Z. Wang, Y. Shi, M. Jing, and K. Zou, “Solvothermal synthesis of CdS nanowires using L-cysteine as sulfur source and their characterization,” Appl. Phys., A Mater. Sci. Process.91(1), 69–72 (2008). [CrossRef]
  24. K. B. Tang, Y. T. Qian, J. H. Zeng, and X. G. Yang, “Solvothermal route to semiconductor nanowires,” Adv. Mater. (Deerfield Beach Fla.)15(5), 448–450 (2003). [CrossRef]
  25. C. C. Kang, C. W. Lai, H. C. Peng, J. J. Shyue, and P. T. Chou, “Surfactant- and temperature-controlled CdS nanowire formation,” Small3(11), 1882–1885 (2007). [CrossRef] [PubMed]
  26. Q. Wang, G. Zhao, and G. Han, “Synthesis of single crystalline CdS nanorods by a PVP-assisted solvothermal method,” Mater. Lett.59(21), 2625–2629 (2005). [CrossRef]
  27. K. Pal, U. N. Maiti, T. P. Majumder, and S. C. Debnath, “A facile strategy for the fabrication of uniform CdS nanowires with high yield and its controlled morphological growth with the assistance of PEG in hydrothermal route,” Appl. Surf. Sci.258(1), 163–168 (2011). [CrossRef]
  28. M. A. Correa-Duarte, M. Giersig, N. A. Kotov, and L. M. Liz-Marzán, “Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation,” Langmuir14(22), 6430–6435 (1998). [CrossRef]
  29. X. F. Yu, L. D. Chen, M. Li, M. Y. Xie, L. Zhou, Y. Li, and Q. Q. Wang, “Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4118–4123 (2008). [CrossRef]
  30. S. T. Selvan, T. T. Tan, and J. Y. Ying, “Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)17(13), 1620–1625 (2005). [CrossRef]
  31. L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A.108(25), 10050–10055 (2011). [CrossRef] [PubMed]
  32. A. Pan, X. Lin, R. Liu, C. Li, X. He, H. Gao, and B. Zou, “Surface crystallization effects on the optical and electric properties of CdS nanorods,” Nanotechnology16(10), 2402–2406 (2005). [CrossRef] [PubMed]
  33. P. Liu, V. P. Singh, C. A. Jarro, and S. Rajaputra, “Cadmium sulfide nanowires for the window semiconductor layer in thin film CdS-CdTe solar cells,” Nanotechnology22(14), 145304 (2011). [CrossRef] [PubMed]
  34. F. Wu, J. Z. Zhang, R. Kho, and R. K. Mehra, “Radiative and nonradiative lifetimes of band edge states and deep trap states of CdS nanoparticles determined by time-correlated single photon counting,” Chem. Phys. Lett.330(3-4), 237–242 (2000). [CrossRef]
  35. L. Yu, X. F. Yu, Y. Qiu, Y. Chen, and S. Yang, “Nonlinear photoluminescence of ZnO/ZnS nanotetrapods,” Chem. Phys. Lett.465(4-6), 272–274 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited