OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3265–3278

Fabrication of arrayed metallic nano-particles on a flexible substrate for inducing localized surface plasmon resonance

Chun-Hung Chen and Yung-Chun Lee  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3265-3278 (2013)
http://dx.doi.org/10.1364/OE.21.003265


View Full Text Article

Enhanced HTML    Acrobat PDF (11611 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a new method for fabricating periodic arrays of metallic nano-particles on flexible substrates. This method is based on metallic film contact transfer method and high-power pulsed laser annealing. Experiments have been carried out to produce arrayed metallic nano-particles oriented in a hexagonal pattern. The nano-particle size is 70 nm in diameter and the center-to-center pitch of the hexagonal array is 400 nm. Large-area patterning and fabrication of these arrayed nano-particles can be easily achieved up to an area size of few cm2. Besides, composite or compounded metallic nano-particle arrays can also be produced using different metal materials. The localized surface plasmon resonance (LSPR) effects induced by the fabricated arrays of nano-particles are experimentally observed and quantitatively measured. Numerical simulation on these LPSR effects is performed and the simulation results are in good agreement with experimental data.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 30, 2012
Revised Manuscript: November 26, 2012
Manuscript Accepted: November 29, 2012
Published: February 1, 2013

Citation
Chun-Hung Chen and Yung-Chun Lee, "Fabrication of arrayed metallic nano-particles on a flexible substrate for inducing localized surface plasmon resonance," Opt. Express 21, 3265-3278 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3265


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004). [CrossRef]
  2. T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. (Deerfield Beach Fla.)22(16), 1805–1825 (2010). [CrossRef] [PubMed]
  3. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys.57(3), 783–826 (1985). [CrossRef]
  4. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  5. Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B106(37), 9463–9483 (2002). [CrossRef]
  6. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005). [CrossRef] [PubMed]
  7. N. Leopold and B. Lendl, “A new method for fast preparation of highly surface-enhanced raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride,” J. Phys. Chem. B107(24), 5723–5727 (2003). [CrossRef]
  8. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008). [CrossRef] [PubMed]
  9. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced raman scattering (SERS),” Opt. Express17(5), 3741–3753 (2009). [CrossRef] [PubMed]
  10. K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater.32(1), 221–233 (2009). [CrossRef]
  11. A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett.96(4), 043307 (2010). [CrossRef]
  12. J. H. Sung, B. S. Kim, C. H. Choi, M. W. Lee, S. G. Lee, S. G. Park, E. H. Lee, and O. B. Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng.86(4-6), 1120–1123 (2009). [CrossRef]
  13. B. Butun, J. Cesario, S. Enoch, R. Quidant, and E. Ozbay, “InGaN green light emitting diodes with deposited nanoparticles,” Photon. Nanostructures5(2-3), 86–90 (2007). [CrossRef]
  14. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology19(34), 345201 (2008). [CrossRef] [PubMed]
  15. K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, K. Nishizuka, Y. Kawakami, and A. Scherer, “Surface plasmon enhanced InGaN light emitter,” Proc. SPIE5733, 94–103 (2005). [CrossRef]
  16. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)20(7), 1253–1257 (2008). [CrossRef]
  17. Y. C. Chang, F. Y. Chou, P. H. Yeh, H. W. Chen, S.-H. Chang, Y. C. Lan, T. F. Guo, T. C. Tsai, and C. T. Lee, “Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells,” J. Vac. Sci. Technol. B25(6), 1899–1902 (2007). [CrossRef]
  18. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett.93(7), 073307 (2008). [CrossRef]
  19. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells93(8), 1377–1382 (2009). [CrossRef]
  20. A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett.10(4), 1501–1505 (2010). [CrossRef] [PubMed]
  21. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  22. T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, “Laser production of supersonic metal cluster beams,” J. Chem. Phys.74(11), 6511–6512 (1981). [CrossRef]
  23. T. Seto, Y. Kawakami, N. Suzuki, M. Hirasawa, and N. Aya, “Laser synthesis of uniform silicon single nanodots,” Nano Lett.1(6), 315–318 (2001). [CrossRef]
  24. F. Mafun, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B104(35), 8333–8337 (2000). [CrossRef]
  25. F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B104(39), 9111–9117 (2000). [CrossRef]
  26. F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B105(22), 5114–5120 (2001). [CrossRef]
  27. S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, V. Ezersky, and D. Eliezer, “Nanoparticles and nanotubes induced by femtosecond lasers,” Laser Part. Beams23(01), 15–19 (2005). [CrossRef]
  28. B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett.90(4), 044103 (2007). [CrossRef]
  29. B. Liu, Z. Hu, Y. Chen, K. Sun, X. Pan, and Y. Che, “Ultrafast pulsed laser ablation for synthesis of nanocrystals,” Proc. SPIE6460, 66450R, 66450R-9 (2007). [CrossRef]
  30. R. A. Ganeev, U. Chakravarty, P. A. Naik, H. Srivastava, C. Mukherjee, M. K. Tiwari, R. V. Nandedkar, and P. D. Gupta, “Pulsed laser deposition of metal films and nanoparticles in vacuum using subnanosecond laser pulses,” Appl. Opt.46(8), 1205–1210 (2007). [CrossRef] [PubMed]
  31. S. Roginsky and A. Schalnikoff, “Eine neue methode der herstellung kolloider lösungen,” Colloid Polym. Sci.43, 67–70 (1927).
  32. H. Bonnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Joupen, and B. Korall, “Formation of colloidal transition metals in organic phases and their application in catalysis,” Angew. Chem. Int. Ed. Engl.30(10), 1312–1314 (1991). [CrossRef]
  33. J. C. Hulteen and R. P. V. Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A13(3), 1553–1558 (1995). [CrossRef]
  34. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B103(19), 3854–3863 (1999). [CrossRef]
  35. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B105(12), 2343–2350 (2001). [CrossRef]
  36. J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays,” Adv. Mater. (Deerfield Beach Fla.)22(38), 4249–4269 (2010). [CrossRef] [PubMed]
  37. S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.)23(22-23), 2515–2533 (2011). [CrossRef] [PubMed]
  38. G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir21(4), 1158–1161 (2005). [CrossRef] [PubMed]
  39. M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for the 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng.61, 441–448 (2002). [CrossRef]
  40. C. H. Chen and Y. C. Lee, “Fabrication of metallic micro/nano-particles by surface patterning and pulsed laser annealing,” Thin Solid Films518(17), 4786–4790 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited