OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3342–3353

Scalable modulator for frequency shift keying in free space optical communications

Shelby Jay Savage, Bryan S. Robinson, David O. Caplan, John J. Carney, Don M. Boroson, Farhad Hakimi, Scott A. Hamilton, John D. Moores, and Marius A. Albota  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3342-3353 (2013)
http://dx.doi.org/10.1364/OE.21.003342


View Full Text Article

Acrobat PDF (2798 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Frequency shift keyed (FSK) modulation formats are well-suited to deep space links and other high loss links. FSK’s advantage comes from its use of bandwidth expansion. I.e., FSK counteracts power losses in the link by using an optical bandwidth that is greater than the data rate, just as pulse position modulation (PPM) does. Unlike PPM, increasing FSK’s bandwidth expansion does not require increased bandwidth in electronic components. We present an FSK modulator whose component count rises logarithmically with the bandwidth expansion. We tested it with four-fold bandwidth expansion at 5 and 20 Gbit/s. When paired with a pre-amplified receiver, the required received power was about 4 and 5 dB from the theoretical best for such receivers. We also tested the FSK transmitter with a photon counting receiver.

© 2013 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(060.2605) Fiber optics and optical communications : Free-space optical communication
(250.4110) Optoelectronics : Modulators

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 15, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: January 7, 2013
Published: February 4, 2013

Citation
Shelby Jay Savage, Bryan S. Robinson, David O. Caplan, John J. Carney, Don M. Boroson, Farhad Hakimi, Scott A. Hamilton, John D. Moores, and Marius A. Albota, "Scalable modulator for frequency shift keying in free space optical communications," Opt. Express 21, 3342-3353 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3342


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Biswas, D. Boroson, and B. Edwards, “Mars laser communication demonstration: what it would have been,” Proc. SPIE6105, 610502 (2006).
  2. J. Pierce, “Optical channels: practical limits with photon counting,” IEEE Trans. Commun.26(12), 1819–1821 (1978). [CrossRef]
  3. D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Comm. Res.4(4-5), 225–362 (2007). [CrossRef]
  4. R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990). [CrossRef]
  5. S. B. Alexander, R. Barry, D. M. Castagnozzi, V. W. S. Chan, D. M. Hodsdon, L. L. Jeromin, J. E. Kaufmann, D. M. Materna, R. J. Parr, M. L. Stevens, and D. W. White, “4-ary FSK coherent optical communication system,” Electron. Lett.26(17), 1346–1348 (1990). [CrossRef]
  6. R. Noe, H. Rodler, A. Ebberg, G. Gaukel, and F. Auracher, “Optical FSK transmission with pattern independent 119 photoelectrons/bit receiver sensitivity with endless polarization control,” Electron. Lett.25(12), 757–758 (1989). [CrossRef]
  7. A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using ASK, FSK and DPSK modulation,” IEEE Photon. Technol. Lett.2(12), 908–910 (1990). [CrossRef]
  8. R. S. Vodhanel, J. L. Gimlett, N. K. Cheung, and S. Tsuji, “FSK heterodyne transmission experiments at 560 Mbit/s and 1 Gbit/s,” J. Lightwave Technol.5(4), 461–468 (1987). [CrossRef]
  9. A. R. Chraplyvy, R. W. Tkach, A. H. Gnauck, and R. M. Derosier, “8Gbit/s FSK modulation of DFB lasers with optical demodulation,” Electron. Lett.25(5), 319–321 (1989). [CrossRef]
  10. J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003). [CrossRef]
  11. J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003). [CrossRef]
  12. J.-W. Jeong, I. W. Jung, H. J. Jung, D. M. Baney, and O. Solgaard, “Multifunctional tunable optical filter using MEMS spatial light modulator,” J. Microelectromech. Syst.19(3), 610–618 (2010). [CrossRef]
  13. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express18(11), 10941–10946 (2010). [CrossRef] [PubMed]
  14. M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum. Electron.17(11), 2225–2227 (1981). [CrossRef]
  15. T. Kawanishi, T. Sakamoto, T. Miyazaki, M. Izutsu, T. Fujita, S. Mori, K. Higuma, and J. Ichikawa, “High-speed optical DQPSK and FSK modulation using integrated Mach-Zehnder interferometers,” Opt. Express14(10), 4469–4478 (2006). [CrossRef] [PubMed]
  16. B. Robinson and D. Boroson, “Achievable capacity using photon-counting array-based receivers with on-off-keyed and frequency-shift-keyed modulation formats,” Proc. SPIE8246, 824604 (2012). [CrossRef]
  17. D. Boroson, “A survey of technology-driven capacity limits for free-space laser communications,” Proc. SPIE6709, 670918, 670918-19 (2007). [CrossRef]
  18. E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol.14(11), 2530–2536 (1996). [CrossRef]
  19. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36(25), 2089–2090 (2000). [CrossRef]
  20. M. Kuznetsov and D. O. Caplan, “Time-frequency analysis of optical communication signals and the effects of second and third order dispersion,” in CLEO, Technical Digest (Optical Society of America, 2000).
  21. D. O. Caplan, J. J. Carney, and S. Constantine, “Parallel direct modulation laser transmitters for high-speed high-sensitivity laser communications,” in CLEO, Technical Digest (Optical Society of America, 2011).
  22. D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep.4(4-5), 225–362 (2007). [CrossRef]
  23. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001). [CrossRef]
  24. E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond.17(2), 279–284 (2007). [CrossRef]
  25. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley-Interscience, 2005).
  26. S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited