OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3379–3387

Quantitative characterization of the energy circulation in helical beams by means of near-field diffraction

Roland A. Terborg and Karen Volke-Sepúlveda  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3379-3387 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1886 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method to measure the skew angle of the wave-fronts in an optical vortex, which is directly related with the energy flux. It is based on the analysis of the evolution on propagation of the near-field diffraction pattern generated by a single-slit, consisting of two main lobes that shift in opposite directions depending on the vortex helicity. The transverse displacement of each lobe as a function of the propagation distance allows to quantify the energy circulation. Analytical, numerical and experimental results are compared, showing good agreement. We illustrate the method for the case of Bessel beams, although we also discuss other types of helical beams, such as Laguerre-Gauss and Mathieu beams.

© 2013 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1940) Diffraction and gratings : Diffraction
(050.5080) Diffraction and gratings : Phase shift
(140.3300) Lasers and laser optics : Laser beam shaping
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:

Original Manuscript: November 19, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: December 21, 2012
Published: February 4, 2013

Roland A. Terborg and Karen Volke-Sepúlveda, "Quantitative characterization of the energy circulation in helical beams by means of near-field diffraction," Opt. Express 21, 3379-3387 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A336, 165–190 (1974). [CrossRef]
  2. R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett.98, 203601 (2007). [CrossRef] [PubMed]
  3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992). [CrossRef] [PubMed]
  4. L. Allen, M. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt.39, 291–372 (1999). [CrossRef]
  5. M. V. Berry, “Optical currents,” J. Opt. A: Pure Appl. Opt.11, 094001 (2009). [CrossRef]
  6. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75, 826–829 (1995). [CrossRef] [PubMed]
  7. K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B: Quantum S. Opt.4, S82–S89 (2002). [CrossRef]
  8. M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett.97, 170406 (2006). [CrossRef] [PubMed]
  9. S. Chávez-Cerda, J. C. Gutiérrez-Vega, and G. H. C. New, “Elliptic vortices of electromagnetic wave fields,” Opt. Lett.26, 1803–1805 (2001). [CrossRef]
  10. C. López-Mariscal, J. Gutiérrez-Vega, G. Milne, and K. Dholakia, “Orbital angular momentum transfer in helical Mathieu beams,” Opt. Express14, 4182–4187 (2006). [CrossRef] [PubMed]
  11. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express13, 689–694 (2005). [CrossRef] [PubMed]
  12. G. Molina-Terriza, J. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3, 305–310 (2007). [CrossRef]
  13. K. Volke-Sepúlveda and R. Jáuregui, “All-optical 3D atomic loops generated with Bessel light fields,” J. Phys. B: At. Mol. Opt.42, 085303 (2009). [CrossRef]
  14. G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett.69, 2503–2506 (1992). [CrossRef] [PubMed]
  15. Y. V. Kartashov, A. A. Egorov, V. A. Vysloukh, and L. Torner, “Shaping soliton properties in Mathieu lattices,” Opt. Lett.31, 238–240 (2006). [CrossRef] [PubMed]
  16. A. Ruelas, S. Lopez-Aguayo, and J. C. Gutiérrez-Vega, “Stable solitons in elliptical photonic lattices,” Opt. Lett.33, 2785–2787 (2008). [CrossRef] [PubMed]
  17. G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett.30, 3308–3310 (2005). [CrossRef]
  18. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A6, 1748–1754 (1989). [CrossRef] [PubMed]
  19. V. Arrizón, D. Sánchez-de-la Llave, U. Ruiz, and G. Méndez, “Efficient generation of an arbitrary nondiffracting Bessel beam employing its phase modulation,” Opt. Lett.34, 1456–1458 (2009). [CrossRef] [PubMed]
  20. I. Ricardez-Vargas and K. Volke-Sepúlveda, “Experimental generation and dynamical reconfiguration of different circular optical lattices for applications in atom trapping,” J. Opt. Soc. Am. B27, 948–955 (2010). [CrossRef]
  21. R. J. Hernández-Hernández, R. A. Terborg, I. Ricardez-Vargas, and K. Volke-Sepúlveda, “Experimental generation of Mathieu-Gauss beams with a phase-only spatial light modulator,” Appl. Opt.49, 6903–6909 (2010). [CrossRef] [PubMed]
  22. H. Sztul and R. Alfano, “Double-slit interference with Laguerre-Gaussian beams,” Opt. Lett.31, 999–1001 (2006). [CrossRef] [PubMed]
  23. J. Arlt, “Handedness and azimuthal energy flow of optical vortex beams,” J. Mod. Opt.50, 1573–1580 (2003).
  24. J. Masajada, “Half-plane diffraction in the case of Gaussian beams containing an optical vortex,” Opt. Commun.175, 289–294 (2000). [CrossRef]
  25. D. Ghai, P. Senthilkumaran, and R. Sirohi, “Single-slit diffraction of an optical beam with phase singularity,” Opt. Laser Eng.47, 123–126 (2009). [CrossRef]
  26. J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chávez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum,” Phys. Rev. Lett.105, 053904 (2010). [CrossRef] [PubMed]
  27. C. Guo, L. Lu, and H. Wang, “Characterizing topological charge of optical vortices by using an annular aperture,” Opt. Lett.34, 3686–3688 (2009). [CrossRef] [PubMed]
  28. H. Tao, Y. Liu, Z. Chen, and J. Pu, “Measuring the topological charge of vortex beams by using an annular ellipse aperture,” Appl. Phys. B: Lasers Opt.106, 927–932 (2012). [CrossRef]
  29. A. Kumar, P. Vaity, and R. Singh, “Diffraction characteristics of optical vortex passing through an aperture-iris diaphragm,” Opt. Commun.283, 4141–4145 (2010). [CrossRef]
  30. P. H. F. Mesquita, A. J. Jesus-Silva, E. J. S. Fonseca, and J. M. Hickmann, “Engineering a square truncated lattice with light’s orbital angular momentum,” Opt. Express19, 20616–20621 (2011). [CrossRef] [PubMed]
  31. Y. Han and G. Zhao, “Measuring the topological charge of optical vortices with an axicon,” Opt. Lett.36, 2017–2019 (2011). [CrossRef] [PubMed]
  32. M. V. Berry and M. R. Dennis, “Stream function for optical energy flow,” J. Opt.13, 064004 (2011). [CrossRef]
  33. A. Y. Bekshaev, “Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum,” J. Opt. A: Pure Appl. Opt.11, 094003 (2009). [CrossRef]
  34. J. Leach, S. Keen, M. J. Padgett, C. Saunter, and G. D. Love, “Direct measurement of the skew angle of the Poynting vector in a helically phased beam,” Opt. Express14, 11919–11924 (2006). [CrossRef] [PubMed]
  35. F. A. Starikov, G. G. Kochemasov, S. M. Kulikov, A. N. Manachinsky, N. V. Maslov, A. V. Ogorodnikov, S. A. Sukharev, V. P. Aksenov, I. V. Izmailov, F. Y. Kanev, V. V. Atuchin, and I. S. Soldatenkov, “Wavefront reconstruction of an optical vortex by a Hartmann-Shack sensor,” Opt. Lett.32, 2291–2293 (2007). [CrossRef] [PubMed]
  36. K. Volke-Sepúlveda, A. O. Santillán, and R. Boullosa, “Transfer of angular momentum to matter from acoustical vortices in free space,” Phys. Rev. Lett.100, 024302 (2008). [CrossRef] [PubMed]
  37. J. Leach and M. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys.5, 154.1–154.7 (2003). [CrossRef]
  38. B. T. Hefner and P. L. Marston, “An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems,” J. Acoust. Soc. Am.106, 3313–3316 (1999). [CrossRef]
  39. J. L. Thomas and R. Marchiano, “Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices,” Phys. Rev. Lett.91, 244302 (2003). [CrossRef] [PubMed]
  40. K. D. Skeldon, C. Wilson, M. Edgar, and M. J. Padgett, “An acoustic spanner and its associated rotational Doppler shift,” New J. Phys.10, 013018 (2008). [CrossRef]
  41. B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science331, 192–195 (2011). [CrossRef] [PubMed]
  42. A. G. Peele, P. J. McMahon, D. Paterson, C. Q. Tran, A. P. Mancuso, K. A. Nugent, J. P. Hayes, E. Harvey, B. Lai, and I. McNulty, “Observation of an x-ray vortex,” Opt. Lett.27, 1752–1754 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited