OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3388–3399

Flexible tube lattice fibers for terahertz applications

V. Setti, L. Vincetti, and A. Argyros  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3388-3399 (2013)
http://dx.doi.org/10.1364/OE.21.003388


View Full Text Article

Enhanced HTML    Acrobat PDF (2340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper a flexible hollow core waveguide for the terahertz spectral range is demonstrated. Its cladding is composed of a circular arrangement of dielectric tubes surrounded by a heat-shrink jacket that allows the fiber to be flexible. Characterization of straight samples shows that the hollow core allows the absorption caused by the polymethylmethacrylate tubes of the cladding to be reduced by 31 times at 0.375 THz and 272 times at 0.828 THz with respect to the bulk material, achieving losses of 0.3 and 0.16 dB/cm respectively. Bending loss is also experimentally measured and compared to numerical results. For large bending radii bending loss scales as R b 2, whereas for small bending radii additional resonances between core and cladding appear. The transmission window bandwidth is also shown to shrink as the bending radius is reduced. An analytical model is proposed to predict and quantify both of these bending effects.

© 2013 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.4005) Fiber optics and optical communications : Microstructured fibers
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 19, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: December 31, 2012
Published: February 4, 2013

Citation
V. Setti, L. Vincetti, and A. Argyros, "Flexible tube lattice fibers for terahertz applications," Opt. Express 21, 3388-3399 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3388


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “Thz propagation in kagome hollow-core microstructured fibers,” Opt. Express19, 18470–18478 (2011). [CrossRef] [PubMed]
  2. P. Doradla, C. S. Joseph, J. Kumar, and R. H. Giles, “Characterization of bending loss in hollow flexible terahertz weaveguides,” Opt. Express20, 19176–19184 (2012). [CrossRef] [PubMed]
  3. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core thz bragg fibers,” J. Opt. Soc. Am. B28, 896–907 (2011). [CrossRef]
  4. L. Vincetti, V. Setti, and M. Zoboli, “Terahertz tube lattice fibers with octagonal symmetry,” IEEE Photon. Technol. Lett.22, 972–974 (2010). [CrossRef]
  5. E. Nguema, D. Fèrachou, G. Humbert, J. L. Auguste, and J. M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett.36, 1782–1784 (2011). [CrossRef] [PubMed]
  6. J. T. Lu, C. H. Lai, T. F. Tseng, H. Chen, Y. F. Tsai, I. J. Chen, Y. J. Hwang, H. C. Chang, and C. K. Sun, “Terahertz polarization-sensitive rectangular pipe waveguides,” Opt. Express19, 21532–21539 (2011). [CrossRef] [PubMed]
  7. C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express18, 309–322 (2009). [CrossRef]
  8. J. T. Lu, Y. C. Hsueh, Y. R. Huang, Y. J. Hwang, and C. K. Sun, “Bending loss of terahertz pipe waveguides,” Opt. Express18, 26332–26338 (2010). [CrossRef] [PubMed]
  9. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using microstructured polymer optical fiber,” Opt. Lett.33, 902–904 (2008). [CrossRef] [PubMed]
  10. D. S. Wu, A. Argyros, and S. G. Leon-Saval, “Reducing the size of hollow terahertz waveguides,” J. Lightwave Technol.29, 97–103 (2011). [CrossRef]
  11. B. You, J. Y. Lu, J. H. Liou, C. P. Yu, H. Z. Chen, T. A. Liu, and J. L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express18, 19353–19360 (2010). [CrossRef] [PubMed]
  12. B. You, J. Y. Lu, C. P. Yu, T. A. Liu, and J. L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express20, 5858–5866 (2012). [CrossRef] [PubMed]
  13. L. Vincetti and V. Setti, “Confinement loss in kagome and tube lattice fibers: Comparison and analysis,” J. Lightwave Technol.30, 1470–1474 (2012). [CrossRef]
  14. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318, 1118–1121 (2007). [CrossRef] [PubMed]
  15. L. Vincetti and V. Setti, “Extra loss due to fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express20, 14350–14361 (2012). [CrossRef] [PubMed]
  16. A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express15, 7713–7719 (2007). [CrossRef] [PubMed]
  17. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonance and inhibited coupling in hollow core square lattice optical fibres,” Opt. Express16, 5642–5648 (2008). [CrossRef] [PubMed]
  18. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core kagome hollow-core photonic crystal fiber,” Opt. Lett.36, 669–671 (2011). [CrossRef] [PubMed]
  19. T. Grujic, B. T. Kuhlmey, A. Argyros, S. Coen, and C. M. de Sterke, “Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling,” Opt. Express18, 25556–25566 (2010). [CrossRef] [PubMed]
  20. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express18, 23133–23146 (2010). [CrossRef] [PubMed]
  21. A. D. Pryamikov, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, Transmission of CO2 Laser Radiation through Class Hollow Core Microstructured Fibers (InTech, 2012), chap. 8, pp. 227–247.
  22. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. S. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibers,” Opt. Express15, 12680–12685 (2007). [CrossRef] [PubMed]
  23. F. Gérôme, R. Jamier, J. L. Auguste, G. Humbert, and J. M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett.35, 1157–1159 (2010). [CrossRef] [PubMed]
  24. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express19, 25723–25728 (2011). [CrossRef]
  25. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3 – 4 μm spectral region,” Opt. Express20, 11153–11158 (2012). [CrossRef] [PubMed]
  26. Y. S. Jun, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Kor. Phys. Soc.49, 513–517 (2006).
  27. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured zeonex terahertz fiber,” J. Opt. Soc. Am. B28, 1013–1018 (2011). [CrossRef]
  28. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low loss topas fibers for the terahertz frequency range,” Opt. Express17, 8592–8601 (2009). [CrossRef] [PubMed]
  29. J. Olszewski, M. Szpulak, and W. Urbańczyk, “Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers,” Opt. Express13, 6015–6022 (2005). [CrossRef] [PubMed]
  30. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).
  31. S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core omniguide fibers,” Opt. Express9, 748–779 (2001). [CrossRef] [PubMed]
  32. M. Miyagi and S. Kawakami, “Losses and phase constant changes caused by bends in the general class of hollow waveguides for the infrared,” Appl. Opt.20, 4221–4226 (1981). [CrossRef] [PubMed]
  33. J. A. Stratton, Electromagnetic Theory (McGraw Hill, 1941). Section 9.15.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited