OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3417–3433

A practical inverse-problem approach to digital holographic reconstruction

Aurélien Bourquard, Nicolas Pavillon, Emrah Bostan, Christian Depeursinge, and Michael Unser  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3417-3433 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (9983 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose a new technique for high-quality reconstruction from single digital holographic acquisitions. The unknown complex object field is found as the solution of a nonlinear inverse problem that consists in the minimization of an energy functional. The latter includes total-variation (TV) regularization terms that constrain the spatial amplitude and phase distributions of the reconstructed data. The algorithm that we derive tolerates downsampling, which allows to acquire substantially fewer measurements for reconstruction compared to the state of the art. We demonstrate the effectiveness of our method through several experiments on simulated and real off-axis holograms.

© 2013 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(090.1995) Holography : Digital holography

ToC Category:
Image Processing

Original Manuscript: November 19, 2012
Revised Manuscript: January 16, 2013
Manuscript Accepted: January 16, 2013
Published: February 4, 2013

Aurélien Bourquard, Nicolas Pavillon, Emrah Bostan, Christian Depeursinge, and Michael Unser, "A practical inverse-problem approach to digital holographic reconstruction," Opt. Express 21, 3417-3433 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt.38(34), 6994–7001 (1999). [CrossRef]
  2. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett.22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  3. G. Popescu, T. Ikeda, R. Dasari, and M. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett.31(6), 775–777 (2006). [CrossRef] [PubMed]
  4. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt.47(19), D183–D189 (2008). [CrossRef]
  5. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik35(2), 227–246 (1972).
  6. V. Katkovnik, A. Migukin, and J. Astola, “3D wave field reconstruction from intensity-only data: variational inverse imaging techniques,” in 9th Euro-American Workshop on Information Optics (Helsinki, Finland, 2010).
  7. M. Cetin, W. Karl, and A. Willsky, “Edge-preserving image reconstruction for coherent imaging applications,” in Proceedings of ICIP 2002 International Conference on Image Processing (Rochester, NY, USA, 2002).
  8. X. Zhang and E. Lam, “Edge-preserving sectional image reconstruction in optical scanning holography,” J. Opt. Soc. Am. A27(7), 1630–1637 (2010). [CrossRef]
  9. D. Brady, K. Choi, D. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express17(15), 13,040–13,049 (2009).
  10. M. Marim, M. Atlan, E. Angelini, and J. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Opt. Lett.35(6), 871–873 (2010). [CrossRef] [PubMed]
  11. Y. Rivenson, A. Stern, and B. Javidi, “Compressive fresnel holography,” J. Disp. Technol.6(10), 506–509 (2010). [CrossRef]
  12. S. Sotthivirat and J. Fessler, “Penalized-likelihood image reconstruction for digital holography,” J. Opt. Soc. Am. A21(5), 737–750 (2004). [CrossRef]
  13. M. Marim, E. Angelini, J.-C. Olivo-Marin, and M. Atlan, “Off-axis compressed holographic microscopy in low-light conditions,” Opt. Lett.36(1), 79–81 (2011). [CrossRef] [PubMed]
  14. N. Pavillon, C. Seelamantula, J. Kuhn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt.48(34), H186–H195 (2009). [CrossRef]
  15. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express14(10), 4300–4306 (2006). [CrossRef] [PubMed]
  16. M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image sensors,” Microelectron. J.37(5), 433–451 (2006). [CrossRef]
  17. L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D60, 259–268 (1992). [CrossRef]
  18. T. Chan and P. Mulet, “On the convergence of the lagged diffusivity fixed point method in total variation image restoration,” SIAM J. Numer. Anal.36(2), 354–367 (1999). [CrossRef]
  19. O. Scherzer, ed., Energy Minimization Methods (Springer, 2011).
  20. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hills Companies, Inc., 1996).
  21. M. Guizar-Sicairos, A. Diaz, M. Holler, M. Lucas, A. Menzel, R. Wepf, and O. Bunk, “Phase tomography from x-ray coherent diffractive imaging projections,” Opt. Express19(22), 345–,357 (2011). [CrossRef]
  22. K. Choi, R. Horisaki, J. Hahn, S. Lim, D. L. Marks, T. J. Schulz, and D. J. Brady, “Compressive holography of diffuse objects,” Appl. Opt.49(34), H1–H10 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited