OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3434–3444

Observation of the photorefractive effects in bent-core liquid crystals

Ying Xiang, Yi-Kun Liu, Zhi-Yong Zhang, Hong-Jun You, Tian Xia, Everett Wang, and Zheng-Dong Cheng  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3434-3444 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3140 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new observation of photorefractive (PR) effects in bent-core nematic (BCN) liquid crystal (LC) materials, where two kinds of optical-induced gratings are demonstrated and compared in pure and surface-doped BCN systems. The experimental results showed that these two kinds of gratings exhibit distinctive different polarization-dependent and angular-dependent behaviors, respectively. Furthermore, we supplied the pure and surface-doped rodlike LC systems for comparison, which revealed that V shape molecular structure of BCN can produce charge carrier more efficiently than rodlike molecular structure does. Thus BCN materials can offer an exciting potential for optical information processing.

© 2013 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:

Original Manuscript: November 26, 2012
Revised Manuscript: January 19, 2013
Manuscript Accepted: January 19, 2013
Published: February 4, 2013

Ying Xiang, Yi-Kun Liu, Zhi-Yong Zhang, Hong-Jun You, Tian Xia, Everett Wang, and Zheng-Dong Cheng, "Observation of the photorefractive effects in bent-core liquid crystals," Opt. Express 21, 3434-3444 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-Field-Induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett.47(19), 1411–1414 (1981). [CrossRef]
  2. H. Hsiung, L. P. Shi, and Y. R. Shen, “Transient laser-induced molecular reorientation and laser heating in a nematic liquid crystal,” Phys. Rev. A30(3), 1453–1460 (1984). [CrossRef]
  3. F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter11(41), R439–R487 (1999). [CrossRef]
  4. I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep.471(5-6), 221–267 (2009). [CrossRef]
  5. I. Jánossy, “Molecular interpretation of the absorption-induced optical reorientation of nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(4), 2957–2963 (1994). [CrossRef] [PubMed]
  6. J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett.25(6), 414–416 (2000). [CrossRef] [PubMed]
  7. Y. Xiang, M. Li, L. Tao, L. Jie, and J. Y. Zhou, “Optical-Field-Induced reorientation of nematic liquid crystal doped with FeTPPCl based on resonant model,” Appl. Phys., A Mater. Sci. Process.86, 207–211 (2007).
  8. I. C. Khoo, M. Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE87(11), 1897–1911 (1999).
  9. G. Zhang, G. Montemezzani, and P. Gunter, “Orientational photorefractive effect in nematic liquid crystal with externally applied fields,” J. Appl. Phys.88(4), 1709–1717 (2000). [CrossRef]
  10. W. Lee and S. L. Yeh, “Optical amplification in nematics doped with carbon nanotubes,” Appl. Phys. Lett.79(27), 4488–4490 (2001). [CrossRef]
  11. Y. Xiang, Y. K. Liu, T. Li, S. L. Yang, and Z. J. Jiang, “Laser induced gratings enhanced by surface-charge mediated electric field in doped nematic liquid crystals,” J. Appl. Phys.104(6), 063107 (2008). [CrossRef]
  12. S. Bartkiewicz and A. Miniewicz, “Mechanism of optical recording in doped liquid crystals,” Adv. Mater. Opt. Electron.6(56), 219–224 (1996). [CrossRef]
  13. F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer-liquid-crystal structures,” Appl. Phys. Lett.74(20), 2924–2926 (1999). [CrossRef]
  14. S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures,” Opt. Commun.187(1-3), 257–261 (2001). [CrossRef]
  15. E. V. Rudenko and A. V. Sukhov, “Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity,” Sov. Phys. JETP78, 875–882 (1994).
  16. N. V. Tabiryan and C. Umeton, “Surface-activated photorefractivity and electro-optic phenomena in liquid crystals,” J. Opt. Soc. Am. B15(7), 1912–1917 (1998). [CrossRef]
  17. P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photoinduced surface-charge modulation in undoped liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(6), 061708 (2004). [CrossRef] [PubMed]
  18. I. C. Khoo, K. Chen, and Y. Z. Williams, “Orientational photorefractive effect in undoped and CdSe nanorods-doped nematic liquid crystal:bulk and interface contributions,” IEEE J. Sel. Top. Quant.12(3), 443–450 (2006). [CrossRef]
  19. H. Ono and N. Kawatsuki, “Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films,” Appl. Phys. Lett.71(9), 1162–1164 (1997). [CrossRef]
  20. P. Pagliusi and G. Cipparrone, “Charge transport due to photoelectric interface activation in pure nematic liquid-crystal cells,” J. Appl. Phys.92(9), 4863–4869 (2002). [CrossRef]
  21. A. Dyadyusha, M. Kaczmarek, and G. Gilchrist, “Surface screening layers and dynamics of energy transfer in photosensitive polymer-liquid crystal structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)446(1), 261–272 (2006). [CrossRef]
  22. J. Etxebarria and M. B. Ros, “Bent-core liquid crystals in the route to functional materials,” J. Mater. Chem.18(25), 2919–2926 (2008). [CrossRef]
  23. H. Takezoe and Y. Takanishi, “Bent-core liquid crystals: their mysterious and attractive world,” Jpn. J. Appl. Phys.45(2A), 597–625 (2006). [CrossRef]
  24. M. Mathews, R. S. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bent-core liquid crystals,” J. Mater. Chem.21(7), 2098–2103 (2011). [CrossRef]
  25. W. Helfrich, “Conduction-Induced a1ignment of nematic liquid crystals: basic model and stability considerations,” J. Chem. Phys.51(9), 4092–4105 (1969). [CrossRef]
  26. E. Kochowska, S. Németh, G. Pelzl, and A. Buka, “Electroconvection with and without the Carr-Helfrich effect in a series of nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 011711 (2004). [CrossRef] [PubMed]
  27. C. V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem.17(3), 284–298 (2007). [CrossRef]
  28. M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys.96(5), 2616–2623 (2004). [CrossRef]
  29. P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett.80(2), 168–170 (2002). [CrossRef]
  30. P. Pagliusi and G. Cipparrone, “Dynamic grating features for the surface-induced photorefractive effect in undoped nematics,” J. Opt. Soc. Am. B21(5), 996–1004 (2004). [CrossRef]
  31. X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett.78(16), 2285–2287 (2001). [CrossRef]
  32. Q. Hu and Y. Bando, “Growth and optical properties of single-crystal tubular ZnO whiskers,” Appl. Phys. Lett.82(9), 1401–1403 (2003). [CrossRef]
  33. M. Abdullah, T. Morimoto, and K. Okuyama, “Generating blue and red luminescence from ZnO/Poly(ethylene glycol) nanocomposites prepared using an In-Situ method,” Adv. Funct. Mater.13(10), 800–804 (2003). [CrossRef]
  34. F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, “Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition,” Appl. Phys. Lett.86(22), 221910 (2005). [CrossRef]
  35. U. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005). [CrossRef]
  36. Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited