OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3463–3473

Four-quadrant gratings moiré fringe alignment measurement in proximity lithography

Jiangping Zhu, Song Hu, Junsheng. Yu, Shaolin Zhou, Yan Tang, Min Zhong, Lixin Zhao, Minyong Chen, Lanlan Li, Yu He, and Wei Jiang  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3463-3473 (2013)
http://dx.doi.org/10.1364/OE.21.003463


View Full Text Article

Enhanced HTML    Acrobat PDF (2052 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper aims to deal with a four-quadrant gratings alignment method benefiting from phase demodulation for proximity lithography, which combines the advantages of interferometry with image processing. Both the mask alignment mark and the wafer alignment mark consist of four sets of gratings, which bring the convenience and simplification of realization for coarse alignment and fine alignment. Four sets of moiré fringes created by superposing the mask alignment mark and the wafer alignment mark are highly sensitive to the misalignment between them. And the misalignment can be easily determined through demodulating the phase of moiré fringe without any external reference. Especially, the period and phase distribution of moiré fringes are unaffected by the gap between the mask and the wafer, not excepting the wavelength of alignment illumination. Disturbance from the illumination can also be negligible, which enhances the technological adaptability. The experimental results bear out the feasibility and rationality of our designed approach.

© 2013 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(100.2650) Image processing : Fringe analysis
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques
(220.1140) Optical design and fabrication : Alignment

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: December 3, 2012
Revised Manuscript: January 15, 2013
Manuscript Accepted: January 22, 2013
Published: February 4, 2013

Citation
Jiangping Zhu, Song Hu, Junsheng. Yu, Shaolin Zhou, Yan Tang, Min Zhong, Lixin Zhao, Minyong Chen, Lanlan Li, Yu He, and Wei Jiang, "Four-quadrant gratings moiré fringe alignment measurement in proximity lithography," Opt. Express 21, 3463-3473 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3463


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. C. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-Integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express20(21), 23643–23652 (2012). [CrossRef] [PubMed]
  2. C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics4(1), 24–26 (2010). [CrossRef]
  3. M. S. Robert-H., “Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry,” Phil. Trans. Roy. Soc. A370(1973), 3951–3952 (2012).
  4. A. J. Whang and N. C. Gallagher, “Synthetic approach to designing optical alignment systems,” Appl. Opt.27(16), 3534–3541 (1988). [CrossRef] [PubMed]
  5. T. Miyatake, M. Hirose, T. Shoki, R. Ohkubo, and K. Yamazaki, “Nanometer scattered-light alignment system using SiC X-ray masks with low optical transparency,” J. Vac. Sci. Technol. B16(6), 3471–3475 (1998). [CrossRef]
  6. D. C. Flanders, H. I. Smith, and S. Austin, “A new interferometric alignment technique,” Appl. Phys. Lett.31(7), 426–428 (1977). [CrossRef]
  7. B. Fay, J. Trotel, and A. Frichet, “Optical alignment system for submicron X-ray lithography,” J. Vac. Sci. Technol.16(6), 1954–1958 (1979). [CrossRef]
  8. T. Kanayama, J. Itoh, N. Atoda, and K. Hoh, “An alignment system for synchrotron radiation X-ray lithography,” J. Vac. Sci. Technol. B6(1), 409–412 (1988). [CrossRef]
  9. A. Une and M. Suzuki, “An optical-heterodyne alignment technique for quarter-micron X-ray lithography,” J. Vac. Sci. Technol. B7(6), 1971–1976 (1989). [CrossRef]
  10. L. Raleigh, “On the manufacture and theory of diffraction gratings,” Philos. Mag.4(310–311), 81–93 (1874).
  11. K. S. Yen and M. M. Ratnam, “Simultaneous measurement of 3-D displacement components from circular moiré fringes: An experimental approach,” Opt. Lasers Eng.50(6), 887–899 (2012). [CrossRef]
  12. L. Huang and X. Y. Su, “Method for acquiring the characteristic parameter of the dual-spiral moiré fringes,” Opt. Lett.33(8), 872–874 (2008). [CrossRef] [PubMed]
  13. K. S. Yen and M. M. Ratnam, “In-plane displacement sensing from circular gratings moiré fringes using graphic analysis approach,” Sensor Rev.31(4), 358–367 (2011). [CrossRef]
  14. X. L. Li, Y. L. Kang, W. Qiu, Q. H. Qin, and X. Xiao, “A study on the digital moiré technique with circular and radial gratings,” Opt. Lasers Eng.45(7), 783–788 (2007). [CrossRef]
  15. Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf.4(1), 1107–1113 (2011).
  16. J. S. Song, Y. H. Lee, J. H. Jo, S. Chang, and K. C. Yuk, “Moiré patterns of two different elongated circular gratings for the fine visual measurement of linear displacements,” Opt. Commun.154(1–3), 100–108 (1998). [CrossRef]
  17. G. H. Yuan, Q. Wang, and X. Yuan, “Dynamic generation of plasmonic Moiré fringes using phase-engineered optical vortex beam,” Opt. Lett.37(13), 2715–2717 (2012). [CrossRef] [PubMed]
  18. M. C. King and D. H. Berry, “Photolithographic mask alignment using moiré techniques,” Appl. Opt.11(11), 2455–2459 (1972). [CrossRef] [PubMed]
  19. Y. Uchida, S. Hattori, and T. Nomura, “An automatic mask alignment technique using moiré interference,” J. Vac. Sci. Technol. B5(1), 244–247 (1987). [CrossRef]
  20. S. Zhou, Y. Yang, L. Zhao, and S. Hu, “Tilt-modulated spatial phase imaging method for wafer-mask leveling in proximity lithography,” Opt. Lett.35(18), 3132–3134 (2010). [CrossRef] [PubMed]
  21. S. Zhou, Y. Fu, X. Tang, S. Hu, W. Chen, and Y. Yang, “Fourier-based analysis of moiré fringe patterns of superposed gratings in alignment of nanolithography,” Opt. Express16(11), 7869–7880 (2008). [CrossRef] [PubMed]
  22. N. Li, W. Wu, and S. Y. Chou, “Sub-20-nm alignment in Nanoimprint lithography using moiré fringe,” Nano Lett.6(11), 2626–2629 (2006). [CrossRef] [PubMed]
  23. A. Moel, E. E. Moon, R. D. Frankel, and H. I. Smith, “Novel on-axis interferometric alignment method with sub-10 nm precision,” J. Vac. Sci. Technol. B11(6), 2191–2194 (1993). [CrossRef]
  24. E. E. Moon, M. K. Mondol, P. N. Everett, and H. I. Smith, “Dynamic alignment control for fluid-immersion lithographies using interferometric-spatial-phase imaging,” J. Vac. Sci. Technol. B23(6), 2607–2610 (2005). [CrossRef]
  25. J. Y. Shao, Y. C. Ding, H. M. Tian, X. Li, and H. Z. Liu, “Digital moiré fringe measurement method for alignment in imprint lithography,” Opt. Laser Technol.44(2), 446–451 (2012). [CrossRef]
  26. J. Y. Shao, H. Z. Liu, Y. C. Ding, L. Wang, and B. H. Lu, “Alignment measurement method for imprint lithography using moiré fringe pattern,” Opt. Eng.47(11), 113604 (2008). [CrossRef]
  27. J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Laser. Eng.371–381 (2013).
  28. J. P. Zhu, S. Hu, J. S. Yu, and Y. Tang, “Alignment method based on matched dual-grating moiré fringe for proximity lithography,” Opt. Eng.51(11), 113603 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited