OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3516–3522

Dual-wavelength synchronously Q-switched solid-state laser with multi-layered graphene as saturable absorber

Yongguang Zhao, Xianlei Li, Miaomiao Xu, Haohai Yu, Yongzhong Wu, Zhengping Wang, Xiaopeng Hao, and Xinguang Xu  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3516-3522 (2013)
http://dx.doi.org/10.1364/OE.21.003516


View Full Text Article

Acrobat PDF (1042 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using multilayered graphene as the saturable absorber (SA), Nd:LYSO crystal as the laser material, we demonstrated a laser-diode (LD) pumped, dual-wavelength passively Q-switched solid-state laser. The maximum average output power is 1.8 W, the largest pulse energy and highest peak power is 11.3 μJ, 118 W, respectively. As we have known, they are the best results for passively Q-switched operation of graphene. The pulse laser is strong enough to realize extra-cavity frequency conversions. With a KTP crystal as the sum-frequency generator, the dual wavelengths are proved to be well time overlapped, which manifests the synchronous modulation to the dual-wavelength with multi-layered graphene.

© 2013 OSA

OCIS Codes
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 11, 2012
Revised Manuscript: January 16, 2013
Manuscript Accepted: January 23, 2013
Published: February 4, 2013

Citation
Yongguang Zhao, Xianlei Li, Miaomiao Xu, Haohai Yu, Yongzhong Wu, Zhengping Wang, Xiaopeng Hao, and Xinguang Xu, "Dual-wavelength synchronously Q-switched solid-state laser with multi-layered graphene as saturable absorber," Opt. Express 21, 3516-3522 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3516


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. G. O’Shea and H. P. Freund, “Free-electron lasers. Status and applications,” Science292(5523), 1853–1858 (2001). [CrossRef] [PubMed]
  2. H. J. Joyce, J. Wong-Leung, C. K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow surface recombination velocity in InP nanowires probed by Terahertz spectroscopy,” Nano Lett.12(10), 5325–5330 (2012). [CrossRef] [PubMed]
  3. F. Junginger, B. Mayer, C. Schmidt, O. Schubert, S. Mährlein, A. Leitenstorfer, R. Huber, and A. Pashkin, “Nonperturbative interband response of a bulk InSb semiconductor driven off resonantly by Terahertz electromagnetic few-cycle pulses,” Phys. Rev. Lett.109(14), 147403 (2012). [CrossRef] [PubMed]
  4. T. Saito, Y. Tatematsu, Y. Yamaguchi, S. Ikeuchi, S. Ogasawara, N. Yamada, R. Ikeda, I. Ogawa, and T. Idehara, “Observation of dynamic interactions between fundamental and second-Harmonic modes in a high-power sub-terahertz gyrotron operating in regimes of soft and hard self-Excitation,” Phys. Rev. Lett.109(15), 155001 (2012). [CrossRef] [PubMed]
  5. K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett.89(14), 141119 (2006). [CrossRef]
  6. D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, “Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects,” Opt. Express15(10), 6478–6483 (2007). [CrossRef] [PubMed]
  7. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett.98(13), 131106 (2011). [CrossRef]
  8. H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett.94(4), 041126 (2009). [CrossRef]
  9. K. Spariosu, W. Chen, R. Stultz, M. Birnbaum, and A. V. Shestakov, “Dual Q switching and laser action at 1.06 and 1.44 microm in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K,” Opt. Lett.18(10), 814–816 (1993). [CrossRef] [PubMed]
  10. K. V. Yumashev, N. V. Kuleshov, A. M. Malyarevich, P. V. Prokoshin, V. G. Shcherbitsky, N. N. Posnov, V. P. Mikhailov, and V. A. Sandulenko, “Ultrafast dynamics of excited-state absorption in V3+:YAG crystal,” J. Appl. Phys.80(8), 4782–4784 (1996). [CrossRef]
  11. P. Li, Y. Li, Y. Sun, X. Hou, H. Zhang, and J. Wang, “Passively Q-switched 1.34 μm Nd:YxGd1-xVO4 laser with Co2+:LaMgAl11O19 saturable absorber,” Opt. Express14(17), 7730–7736 (2006). [CrossRef] [PubMed]
  12. F. Pallas, E. Herault, J. F. Roux, A. Kevorkian, J. L. Coutaz, and G. Vitrant, “Simultaneous passively Q-switched dual-wavelength solid-state laser working at 1065 and 1066 nm,” Opt. Lett.37(14), 2817–2819 (2012). [CrossRef] [PubMed]
  13. H. P. H. Cheng, P. Tidemand-Lichtenberg, O. B. Jensen, P. E. Andersen, P. M. Petersen, and C. Pedersen, “All passive synchronized Q-switching of a quasi-three-level and a four-level Nd:YAG laser,” Opt. Express18(23), 23987–23993 (2010). [CrossRef] [PubMed]
  14. H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Z. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, “Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide,” ACS Nano4(12), 7582–7586 (2010). [CrossRef] [PubMed]
  15. Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010). [CrossRef] [PubMed]
  16. E. Ugolotti, A. Schmidt, V. Petrov, J. Kim, D. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguilo, F. Diaz, and U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett.101(16), 161112 (2012). [CrossRef]
  17. P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination Dynamics in epitaxial graphene,” Nano Lett.8(12), 4248–4251 (2008). [CrossRef] [PubMed]
  18. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett.92(4), 042116 (2008). [CrossRef]
  19. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010). [CrossRef]
  20. Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009). [CrossRef]
  21. Z. Q. Luo, M. Zhou, J. Weng, G. M. Huang, H. Y. Xu, C. C. Ye, and Z. P. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett.35(21), 3709–3711 (2010). [CrossRef] [PubMed]
  22. Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photon. J.4(3), 869–876 (2012). [CrossRef]
  23. D. Z. Li, X. D. Xu, D. H. Zhou, S. D. Zhuang, Z. P. Wang, C. T. Xia, F. Wu, and J. Xu, “Crystal growth, spectral properties, and laser demonstration of laser crystal Nd:LYSO,” Laser Phys. Lett.7(11), 798–804 (2010). [CrossRef]
  24. S. D. Zhuang, X. D. Xu, Z. P. Wang, D. Z. Li, H. H. Yu, J. Xu, L. Guo, L. J. Chen, Y. G. Zhao, and X. G. Xu, “Contunuous-wave and passively Q-switched Nd:LYSO laser,” Laser Phys.21(4), 684–689 (2011). [CrossRef]
  25. L. J. Chen, X. D. Xu, Z. P. Wang, D. Z. Li, H. H. Yu, J. Xu, S. D. Zhuang, L. Guo, Y. G. Zhao, and X. G. Xu, “Efficient dual-wavelength operation of Nd:LYSO laser by diode pumping aimed toward the absorption peak,” Chin. Opt. Lett.9(7), 071403–071405 (2011). [CrossRef]
  26. Z. H. Cong, D. Y. Tang, W. De Tan, J. Zhang, C. W. Xu, D. Luo, X. D. Xu, D. Z. Li, J. Xu, X. Y. Zhang, and Q. P. Wang, “Dual-wavelength passively mode-locked Nd:LuYSiO5 laser with SESAM,” Opt. Express19(5), 3984–3989 (2011). [CrossRef] [PubMed]
  27. Y. G. Zhao, Z. P. Wang, H. H. Yu, S. D. Zhuang, H. J. Zhang, X. D. Xu, J. Xu, X. X. Xu, and J. Y. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett.101(3), 031113 (2012). [CrossRef]
  28. G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, P. Solarz, and M. Berkowski, “Dy-doped Lu2SiO5 single crystal: spectroscopic characteristics and luminescence dynamics,” Appl. Phys. B99(1–2), 285–297 (2010). [CrossRef]
  29. X. L. Li, J. L. Xu, Y. Z. Wu, J. L. He, and X. P. Hao, “Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser,” Opt. Express19(10), 9950–9955 (2011). [CrossRef] [PubMed]
  30. F. Pallas, E. Herault, J. Zhou, J. F. Roux, and G. Vitrant, “Stable dual-wavelength micro laser controlled by the output mirror tilt angle,” Appl. Phys. Lett.99(24), 241113 (2011). [CrossRef]
  31. H. H. Yu, X. F. Chen, X. B. Hu, S. D. Zhuang, Z. P. Wang, X. G. Xu, J. Y. Wang, H. J. Zhang, and M. H. Jiang, “Graphene as a Q-switcher for neodymium-doped lutetium vanadate Laser,” Appl. Phys. Express4(2), 022704 (2011). [CrossRef]
  32. J. L. Xu, X. L. Li, J. L. He, X. P. Hao, Y. Yang, Y. Z. Wu, S. D. Liu, and B. T. Zhang, “Efficient graphene Q- switching and mode locking of 1.34 μm neodymium lasers,” Opt. Lett.37(13), 2652–2654 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited