OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3540–3546

The role of magnetic dipoles and non-zero-order Bragg waves in metamaterial perfect absorbers

Yong Zeng, Hou-Tong Chen, and Diego A. R. Dalvit  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3540-3546 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (789 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a simple treatment of a metamaterial perfect absorber (MPA) based on grating theory. We analytically prove that the condition of MPA requires the existence of two currents, which are nearly out of phase and have almost identical amplitude, akin to a magnetic dipole. Furthermore, we show that non-zero-order Bragg modes within the MPA may consume electromagnetic energy significantly.

© 2013 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: September 7, 2012
Revised Manuscript: October 24, 2012
Manuscript Accepted: January 16, 2013
Published: February 5, 2013

Yong Zeng, Hou-Tong Chen, and Diego A. R. Dalvit, "The role of magnetic dipoles and non-zero-order Bragg waves in metamaterial perfect absorbers," Opt. Express 21, 3540-3546 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008). [CrossRef] [PubMed]
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010). [CrossRef] [PubMed]
  3. C. Hägglund and S. Peter Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys. Chem. Lett.3, 1275–1285 (2012). [CrossRef]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]
  5. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010). [CrossRef] [PubMed]
  6. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011). [CrossRef] [PubMed]
  7. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107, 045901 (2011). [CrossRef] [PubMed]
  8. R. Taubert, D. Dregely, N. Liu, H. Giessen, A. Tittl, and P. Mai, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011). [CrossRef] [PubMed]
  9. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun.2, 517 (2011). [CrossRef] [PubMed]
  10. C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett.37, 308–310 (2012). [CrossRef] [PubMed]
  11. J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng, “Dark acoustic metamaterials as super absorbers for low-frequency sound,” Nat. Commun.3, 756 (2012). [CrossRef] [PubMed]
  12. Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12, 1443–1447 (2012). [CrossRef] [PubMed]
  13. T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun.3, 969 (2012). [CrossRef] [PubMed]
  14. G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for infrared frequencies,” Opt. Express20, 17503–17508 (2012). [CrossRef] [PubMed]
  15. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78, 241103(R) (2008). [CrossRef]
  16. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403 (2010). [CrossRef] [PubMed]
  17. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16, 7181–7188 (2008). [CrossRef] [PubMed]
  18. J. Zhou, H.-T. Chen, T. Koschny, A. K. Azad, A. J. Taylor, C. M. Soukoulis, and J. F. O’Hara, “Application of metasurface description for multilayered metamaterials and an alternative theory for metamaterial perfect absorber,” arXiv:1111.0343v1.
  19. H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20, 7165–7172 (2012). [CrossRef] [PubMed]
  20. C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials,” Metamaterials3, 100–112 (2009). [CrossRef]
  21. H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105, 073901 (2010). [CrossRef] [PubMed]
  22. D. Yu. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B82, 205117 (2010). [CrossRef]
  23. See, for example, M. Born and E. Wolf, Principles of Opticss, 7th ed. (Cambridge, Cambridge, 2011).
  24. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).
  25. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett.36, 945–947 (2011). [CrossRef] [PubMed]
  26. Because our finite-difference time-domain approach cannot handle a permittivity with a nondispersive imaginary part, we adapt a dispersive Lorentz model for the dielectric.
  27. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Ed. (Artech House, Boston, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited