OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3595–3602

Funneling light into subwavelength grooves in metal/dielectric multilayer films

Peng Zhu, Peng Jin, Haofei Shi, and L. Jay Guo  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3595-3602 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1727 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light funneling in metal/dielectric multilayer films with subwavelength grooves is numerically and experimentally demonstrated. Incident light at the resonant wavelength can be completely funneled into dielectric layers through a narrow groove that only covers 12.5% of the surface area within one period and absorbed by a resonant cavity composed of metal/dielectric multilayer films. A narrower resonant dip is observed than that produced by bulk metals with the same thickness and grooves. The mechanism and influencing factors of the reflection spectrum, including groove widths, layer numbers, and the profile of the groove side wall are comprehensively analyzed. Coupling between adjacent grooves with different depths are also discussed. Our study can be applied in the applications of biological sensing and infrared detectors.

© 2013 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(310.6860) Thin films : Thin films, optical properties
(160.3918) Materials : Metamaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Thin Films

Original Manuscript: January 23, 2013
Manuscript Accepted: January 23, 2013
Published: February 5, 2013

Peng Zhu, Peng Jin, Haofei Shi, and L. Jay Guo, "Funneling light into subwavelength grooves in metal/dielectric multilayer films," Opt. Express 21, 3595-3602 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. G. Curto, A. Manjavacas, and F. J. García de Abajo, “Near-field focusing with optical phase antennas,” Opt. Express17(20), 17801–17811 (2009). [CrossRef] [PubMed]
  2. A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science320(5875), 511–513 (2008). [CrossRef] [PubMed]
  3. T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett.96(4), 041103 (2010). [CrossRef]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  5. L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett.103(3), 033902 (2009). [CrossRef] [PubMed]
  6. H. F. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett.96(14), 141107 (2010). [CrossRef]
  7. R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science317(5840), 927–929 (2007). [CrossRef] [PubMed]
  8. G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett.107(16), 163902 (2011). [CrossRef] [PubMed]
  9. F. Pardo, P. Bouchon, R. Haïdar, and J. L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett.107(9), 093902 (2011). [CrossRef] [PubMed]
  10. P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011). [CrossRef]
  11. D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011). [CrossRef] [PubMed]
  12. S. M. Feng, J. M. Elson, and P. L. Overfelt, “Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes,” Opt. Express13(11), 4113–4124 (2005). [CrossRef] [PubMed]
  13. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007). [CrossRef] [PubMed]
  14. D. Edward Palik, Handbook of Optical Constants of Solids (Academic Press, 1985)
  15. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express16(7), 4888–4894 (2008). [CrossRef] [PubMed]
  16. D. Xiang, L. L. Wang, X. A. Zhai, L. Wang, and A. L. Pan, “Optical transmission through metal/dielectric multilayer films perforated with periodic subwavelength slits,” Opt. Commun.284(1), 471–475 (2011). [CrossRef]
  17. Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, “Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays,” Phys. Rev. B76(19), 195405 (2007). [CrossRef]
  18. C. S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A, Pure Appl. Opt.6(1), 22–25 (2004). [CrossRef]
  19. Q. Z. Li, W. H. Lin, and G. P. Wang, “An optical magnetic metamaterial working at multiple frequencies simultaneously,” Appl. Phys. Lett.99(4), 041109 (2011). [CrossRef]
  20. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited